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Zusammenfassung

In dieser Arbeit werden die Grundlagen von modernen Regressionsverfahren erarbei-
tet. Regressionsverfahren modellieren Beziehungen zwischen einer reellwertigen Zielvaria-
blen und mehreren erklärenden Variablen. Neben Erweiterungen von klassischen Verfahren
sind dabei in den letzten Jahren auch, unter anderem in Hinblick auf die größer werdenden
zu untersuchenden Datenmengen, neue Methoden in einem anderen theoretischen Rahmen
entstanden. Die vorgestellten Ansätze werden dann zur Analyse von Telematikdaten ange-
wendet.

Zunächst werden dazu die Grundlagen der Linearen Regression und dabei die Theorie der
Fehlerquadrate dargestellt. Darauf aufbauend werden dann verallgemeinerte lineare Mo-
delle betrachtet, mit denen auch nichtlineare Beziehungen modelliert werden können. Dazu
werden Exponentialfamilien eingeführt, Maximum-Likelihood-Schätzer betrachtet und nu-
merische Lösungsverfahren für nichtlineare Gleichungen angewandt.

Dann werden die Grundlagen von alternativen Regressionsmethoden im Rahmen des ma-
schinellen Lernens, einem Ansatz aus der Informatik, erarbeitet. Hier beruht die Theorie
nicht wie in den ersten Kapiteln auf Verteilungsannahmen, sondern es werden ohne solche
Annahmen Fehlergrenzen mittels Konzentrationsungleichungen und der Einführung einer
Rademacher-Komplexität erarbeitet. Zur Umsetzung dieser Verfahren werden unter ande-
rem quadratische Optimierungsprobleme unter Nebenbedingungen gelöst.
Außerdem erfolgt hier die Erweiterung zur Modellierung von nichtlinearen Beziehungen
mittels spezieller Kernfunktionen, die einem Skalarprodukt auf einem Hilbertraum ent-
sprechen.
Als vorgeschaltetes Instrument zur Regression wird dabei die Hauptkomponentenanalyse
mittels Singulärwertzerlegung betrachtet. Dazu führen wir einen modernen Algorithmus
zur Berechnung der Singulärwertzerlegung ein.

Im nächsten Kapitel werden dann stochastische Simulationsmethoden eingeführt, die bei
der Validierung und Verbesserung von Regressionsmodellen helfen können. Zur Rechtfer-
tigung dieser werden anhand des Berry-Esseen-Theorems Konvergenzraten im Zentralen
Grenzwertsatz erarbeitet.

Im Anwendungskapitel werden die erarbeiteten Methoden schließlich angewandt, um 13
Milliarden Telematikdaten zu analysieren. Dabei werden mit Hilfe der Singulärwertzerle-
gung zunächst charakteristische Fahrprofile herausgearbeitet. Darauf aufbauend wird dann
ein verallgemeinertes lineares Modell erstellt, dass einem beliebigen Fahrprofil eine Kraft-
fahrt-Haftpflicht Prämie zuordnet.
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Introduction

In this thesis we consider regression problems. Thereby we have sample observations
of a real-valued response and corresponding given values of attributes that influence the
response with a random component. Based on that sample we try to find a relationship be-
tween the attributes and the response.

Already 200 years ago, Carl Friedrich Gauß has developed the least-squares method, and
showed that it is, under distribution assumptions for the response, an optimal approach for
Linear Regression. This theory has been extended to Generalized Linear Models since then.

In recent years the alternative framework of Machine Learning has been developed which
does not require assumptions on the specific underlying distribution. So rather than using
the theory of Gauß, this framework concedes that it is not always possible to establish rea-
sonable distribution assumptions and instead relies on establishing generalization bounds
on the errors for large enough samples. Therefore, it is very popular in the modern con-
text of "Big Data" problems, where big data sets have to be analyzed without having much
structural information about them.
Moreover, in those problems it is often useful to preprocess the data. As a popular method
to do that, we will consider the Principal Component Analysis, which allows a dimension-
ality reduction of the regression model.

Thereby we will focus on establishing the theoretical foundations for the considered meth-
ods. These will range from the classical Gauss-Markov theorem and Maximum Likelihood
Estimation in the first statistical chapters to generalization bounds on the errors by using
concentration inequalities and the Rademacher complexity notion in the Machine Learning
framework.

Finally, simulation tools to validate and tweak the regression models will be considered.
As a justification for them, we will establish convergence rates in the central limit theorem.

The concepts will then be applied to the analysis of a big data set of telematics data. That
is, roughly 13 billion values about driving behavior of project participants are considered,
based on which we try to estimate the expected claims expenditures of a driving profile for
an insurance company.
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Chapter 1

Preliminaries: Linear Regression
and Least Squares Theory

To start, we will give a brief overview over the theory of ordinary linear models.

In this thesis we generally consider sample observations of a response, and factors, that
could influence this response, in the first chapters called explanatory variables. In an ordi-
nary linear model, the response is assumed to have normal distribution.
More precisely, we consider a response vector (y1, ..,yn) of n independent random obser-
vations, where we treat yi as a realization Yi(ω) of a normally distributed random variable
Yi : (Ω,F )→ (R,B(R)) here. Thereby the mean µi can vary for different Yi, but the variance
is assumed to be constant, i.e. Var(Yi) = σ2 ∀i.

Moreover, we denote the value of explanatory variable j for observation i by xi j. This
gives a n× p model matrix X, where p denotes the amount of regarded explanatory vari-
ables. Thereby one extra column is usually reserved for a constant term.
To estimate fitted values for the response, a linear model uses a parameter vector β that we
estimate based on the realizations y1, ..,yn.

Definition 1.1. An ordinary linear regression model consists of a model matrix X and a
parameter vector β to obtain the mean vector

µ = Xβ

of the response vector Y . Thereby Y = (Y1, ..,Yn) : (Ω,F ,P)→ (Rn,B(Rn)) is assumed to
have normally distributed and independent components with constant variance, i.e.
Y ∼ Nn(µ,Σ) with Σ = σ2In.

Example 1.2. Consider the claims expenditures of insured car theft per year in Germany in
million euros, according to the German insurance association (GDV).

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
211,4 178,3 175,7 219,0 257,2 259,6 242,4 263,9 262,0 291,3

1



2 Preliminaries: Linear Regression and Least Squares Theory

Given the values of the last ten years 2006-2015 we want to predict the claims expenditures
in 2016.
In ordinary linear regression this is being estimated by the model

µi = β0 +β1xi,

i = 1, ...,10, (x1,x2, ..,x10) = (1,2, ..,10). In matrix notation we can write this as
µ1
µ2
...

µ10

=


1 1
1 2
...

1 10


(

β0
β1

)
.

Remark 1.3. An alternative way to express the ordinary linear model is

y = Xβ + ε

with a normal-distributed error term ε having E(ε) = 0 and covariance matrix V = σ2I.

This expression states directly, that we make assumptions on the error terms in an ordi-
nary linear model. However, for generalizations of this ordinary model the simple additive
structure for the error terms is not suited, so we will mainly stick to the model description
µ = Xβ .

The standard approach to estimate the parameter vector for observed data y = (y1, ...,yn)

uses the least squares method. This determines the value of µ̂ that minimizes

||y− µ̂||2 =
n

∑
i=1

(yi− µ̂i)
2 =

n

∑
i=1

(yi−
p

∑
j=1

β̂ jxi j)
2

on the vector space C(X) formed by the image of X, i.e. it gives fitted values µ̂ with

||y− µ̂|| ≤ ||y−µ|| ∀µ ∈C(X).

Another well-known approach is given by the Maximum-Likelihood estimation.
This method determines the parameter values that maximize the probability of making the
observations given the parameters.
As we are considering independent observations that are normally distributed with constant
variance in linear regression, we can define the joint density function for all observations as

f (y1, ...,yn; µ,σ2) =
n

∏
i=1

fi(yi; µi,σ
2) =

n

∏
i=1

1√
2πσ

e−(yi−µi)
2/2σ2

.

To maximize this term we apply the monotonic function log, which yields

log(
n

∏
i=1

1√
2πσ

e−(yi−µi)
2/2σ2

) = constant− [
n

∑
i=1

(yi−µi)
2]/2σ

2.
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Therefore we have to minimize
n
∑

i=1
(yi−µi)

2 in order to maximize the joint density function,

which means that the Maximum Likelihood estimation corresponds to the least squares
approach in the context of ordinary linear models.

Remark 1.4. The function log f (y1, ...,yn; µ,σ2) =: log(L(β )) is called the log-likelihood.
Thereby we use the notation L(β ) to point out, that the means µi are determined by the pa-
rameter vector β . The ";" denotes the separation between the variable and the parameters
of the density or mass function.

The objective function S(β ) = ||y−Xβ ||2 is convex, by composition of the convex func-
tion u→ ||u||2 with the affine function β → y−Xβ , and it is differentiable.
Thus, S admits a global minimum at β if and only if ∇S(β ) = 0.

Taking the partial derivatives of S(β ) = ∑
n
i=1(yi−∑

p
j=1 xi jβ j)

2 gives

n

∑
i=1

(yi−µi)xi j = 0, j = 1, .., p.

Proposition 1.5 (normal equations). For the ordinary linear model µ =Xβ the least squares
estimates satisfy the normal equations

n

∑
i=1

yixi j =
n

∑
i=1

µ̂ixi j, j = 1, .., p.

To give a compact solution, we go back to matrix form, i.e.

XT y = XT X β̂ .

Now, provided the matrix X and consequently also XT X has full rank, the extremum of L(β )
occurs at

β̂ = (XT X)−1XT y. (1.1)

In Example 1.2 XT X has full rank, so the unique least squares estimate of β is

β̂ = (XT X)−1XT y =

(
10 55
55 385

)−1(
1 1 ... 1
1 2 ... 10

)
y =

(
175,46
11,0218

)
.

Thus ordinary linear regression gives the prediction

µ11 = 175,46+11,0218×11 = 296,7,

i.e. predicted claims expenditures of 296,7 million euros due to insured car theft in 2016 in
Germany.
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Figure 1.1: Ordinary Linear Regression

Remark 1.6. If XT X does not have full rank, the equation admits a family of solutions that
can be given in terms of the pseudo-inverse of matrix XT X , which in turn can be obtained via
the singular value decomposition of XT X , for details see [2, A.2.2]. Considering the singular
value decomposition can also be useful for dimensionality reduction in a regression model,
as we will see in the application chapter.

To be able to state the well-known "BLUE" optimality result for the least squares esti-
mator, we first have to recall the property of unbiasedness of an estimator. Here we only
consider model matrices X with full rank.

Definition 1.7. An estimator β̂ of a parameter β is called unbiased, if

E[β̂ ] = β ,

i.e. if the expectation of the estimator matches the true parameter β .

Proposition 1.8. The least squares estimator β̂ = (XT X)−1XT y is unbiased.

Proof. Taking the representation y=Xβ +ε as in Remark 1.3, where β is the true parameter,
we get

β̂ = (XT X)−1XT (Xβ + ε) = β +(XT X)−1XT
ε.
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Due to the linearity of the expectation, this yields

E(β̂ ) = E(β +(XT X)−1XT
ε) = β +(XT X)−1XT E(ε)︸︷︷︸

=0

= β .

Theorem 1.9 (Gauss-Markov Theorem). Let y = (y1, ..,yn)
T be a realization of a random

vector Y : (Ω,F ,P)→ (Rn,B(Rn)). Suppose E(Y ) = Xβ , where X is a matrix with full rank,
and that Y has covariance matrix Σ = σ2 In.
Then the least squares estimator β̂ = (XT X)−1XT y is the best linear unbiased estimator
(BLUE) of β , in this sense: For any linear combination aT β of the estimators that are linear
in y and unbiased, aT β̂ has minimum variance.

For a proof of this statement see [1, Section 2.7].

Remark 1.10. Note that we did not require the normality assumption for the Gauss-Markov
Theorem, but using the normality assumption one can further show that the least squares
estimator is a minimum variance unbiased estimator (MVUE). So the least squares operator
is a minimum variance estimator under all unbiased estimators in an ordinary linear model,
not only under all linear unbiased estimators.

The ordinary linear model for the problem Example 1.2 is a solid simple model but has
some major restrictions and disadvantages. Firstly, the assumption of normal errors can
clearly not be completely accurate, since the normal distribution has support R but in real-
ity the claims expenditures will surely be nonnegative. Furthermore, in some cases it will
be necessary to model nonlinear developments, for example an exponential growth may be
more reasonable. We can try to model that by considering the logarithms of the claims ex-
penditures but then we won’t have control over the variance of the residuals in the model
anymore in ordinary linear regression, called heteroscedasticity.

Therefore we will introduce more complex models in this thesis, which will give us op-
portunities to model more accurately.





Chapter 2

Generalized Linear Models

As we have seen in the preliminaries, an ordinary linear model has some major con-
straints. Therefore, nowadays Generalized Linear Models (GLMs) are used in statistics.
They extend the standard linear regression model. Thereby a main extension is that they
allow any distribution in an exponential family for the response variable.
To see how much of an advantage this is, we first have to precisely define the class of
exponential families and determine which distributions actually belong to it.

2.1 Exponential Families

Definition 2.1 (exponential family). Consider random variables X : (Ω,Σ,P)→ (R,B(R)),
i.e. random variables that take values in the one-dimensional Euclidean space equipped
with the σ-field of Borel sets.
A family of distributions is an exponential family if its probability density or mass functions
in the variable x can be written as

fX (x;θ ,φ) = exp{[x θ −b(θ)]/a(φ)+ c(x,φ)} (2.1)

with arbitrary, but fixed real-valued functions a : R→ R, b : R→ R and c : R×R→ R.
Thereby θ is called the natural parameter and φ is called the dispersion parameter of the
exponential family.
Again, the ";" denotes the separation between the variable and the parameters of the density
or mass function.

Remark 2.2. Note, that the support of a distribution family which builds an exponential
family does not depend on its parameter values. The general Pareto distribution, for exam-
ple, has varying minimum bound and therefore cannot build an exponential family.

Remark 2.3 (natural exponential family). Often a(φ) = 1 and c(x;φ) = c(x). Then we get a
natural exponential family

f (x;θ) = h(x)exp[x θ −b(θ)]. (2.2)

7



8 Generalized Linear Models

Now we can verify that most of the common distribution families build an exponential
family.

Example 2.4 (Poisson). The probability mass function for a random variable with Poisson
distribution is given by

f (k; µ) =
e−µ µk

k!
=

1
k!

exp(k ln(µ)−µ) =
1
k!

exp(kθ − exp(θ)), k = 0,1,2...,

with the natural parameter θ = ln(µ).
This has natural exponential form (2.2) with h(k) = 1

k! and b(θ) = exp(θ).

Example 2.5 (Binomial). For X ∼ Bin(n, p) let θ = ln(p/(1− p)).
This yields p = exp(θ)/[1+ exp(θ)] and consequently,

f (k; p) =
(

n
k

)
pk(1− p)n−k =

(
n
k

)
exp[k θ −n ln(1+ exp(θ))],

which has natural exponential form (2.2) with h(k) =
(n

k
)

and b(θ) = n ln(1+ exp(θ)).
The natural parameter θ = ln(p/(1− p)) is called the logit.

Example 2.6 (Normal). For the normal distribution we have the probability density function

f (x; µ,σ2) =
1√

2πσ
exp
[
− (x−µ)2

2σ2

]
= exp

[
xµ− 1

2 µ2

σ2 − 1
2

ln(2πσ
2)− x2

2σ2

]
.

This has exponential form (2.1) with natural parameter θ = µ and

b(θ) =
1
2

µ
2 =

1
2

θ
2, a(φ) = σ

2, c(x,φ) =−1
2

ln(2πσ
2)− x2

2σ2 .

Having the exponential form of the probability density or mass function, one can di-
rectly determine the expected value and variance of that distribution:

Theorem 2.7. For a random variable X : (Ω,F ,P)→ (R,B(R)) with probability density or
mass function in exponential form (2.1) it holds

E[X ] = b′(θ) and Var(X) = b′′(θ)a(φ).

Proof. Consider∫
∂

∂θ
f (x;θ ,φ)dx =

∫
∂

∂θ
exp{[x θ −b(θ)]/a(φ)+ c(x,φ)}dx.

According to [1], the regularity conditions that allow interchanging integration and differ-
entiation here are generally fulfilled for distributions in an exponential family. A set of
sufficient regularity conditions are: ∂

∂θ
f (x;θ ,φ) is continuous in x and θ ∈ Θ where Θ is an
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open set, the integral
∫

f (x;θ ,φ)dx exists and
∫ ∣∣∣ ∂

∂θ
f (x;θ ,φ)

∣∣∣dx < M < ∞ ∀θ ∈Θ.
Then the left side of the equation gives

∂

∂θ

∫
f (x;θ ,φ)dx =

∂

∂θ
(1) = 0, (2.3)

since f is a probability density or mass function. On the other hand, we have

∂

∂θ
f (x;θ ,φ) =

∂

∂θ
exp{[x θ −b(θ)]/a(φ)+ c(x,φ)}= f (x;θ ,φ)

x−b′(θ)
a(φ)

,

so that (2.3) implies

∫
f (x;θ ,φ)

x−b′(θ)
a(φ)

dx =
∫

x f (x;θ ,φ)dx︸ ︷︷ ︸
=E(X)

−b′(θ)
∫

f (x;θ ,φ)dx︸ ︷︷ ︸
=1

= 0.

This yields E(X) = b′(θ).

Now we consider the second derivate to obtain

∫
∂ 2

∂θ 2 f (x;θ ,φ)dx =
∂ 2

∂θ 2

∫
f (x;θ ,φ)dx =

∂ 2

∂θ 2 (1) = 0

and compare it with

∫
∂ 2

∂θ 2 f (x;θ ,φ)dx =
∫

∂

∂θ
f (x;θ ,φ)

x−b′(θ)
a(φ)

dx =
∫

f (x;θ ,φ)

[(
x−b′(θ)

a(φ)

)2
− b′′(θ)

a(φ)

]
dx

to get
(x−b′(θ))2

a(φ)2 =
b′′(θ)
a(φ)

.

In the first part of the proof we have shown that b′(θ) = E[X ], so (x− b′(θ))2 = Var[X ] and
the equation above yields

Var[X ] = b′′(θ)a(φ).

Example 2.8. [Poisson] For the Poisson distribution f (k; µ) = e−µ µk

k! we have already es-
tablished θ = ln(µ) as the natural parameter, a(φ) == 1 and b(θ) = exp(θ). So the theorem
above yields E[X ] = b′(θ) = exp(θ) = µ and Var[X ] = b′′(θ) = exp(θ) = µ for a Poisson dis-
tributed random variable X.

Having established the exponential families, we can now exhibit how an ordinary linear
model can be extended to a Generalized Linear Model.
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2.2 Extension to a Generalized Linear Model

Recall, that the ordinary linear model consisted of a given model matrix X and a param-
eter vector β that we estimated based on the sample observations y = (y1, ..,yn).
Thereby we assumed that these observations are realizations of independent normal dis-
tributed random variables Y1, ..,Yn with constant variance.

Now in a GLM, we just require Y1, ..,Yn to belong to an exponential family. Thereby the
exponential family, i.e. the functions a,b,c and the dispersion parameter are fixed over the
Yi, whereas the natural parameter varies, i.e. we have density functions

fYi(y;θi,φ) = exp{[y θi−b(θi)]/a(φ)+ c(y,φ)}.

Furthermore, constant variance of the response vector is not required in a GLM.

Moreover, the do not directly model the mean µ = E(Y ) linearly in a GLM, but rather an
intermediate vector η = g(µ), where g is a monotonic and differentiable function, called link
function. Overall we have

g(µi) = ηi =
p

∑
j=1

β jxi j, i = 1, ...,n.

The link function g, that transforms µi to the natural parameter of Yi for all i, is called the
canonical link. As we saw in the section about exponential families, this natural parameter
is the mean for a normal distribution, the log of the odds for a binomial distribution and the
log of the mean for a Poisson distribution.

Remark 2.9. This implies that for a normal distribution the canonical link function is just
the identity, so we can extract ordinary linear models from the general definition by assum-
ing normal distribution and taking the canonical link, i.e. the identity link function.

Recall that for ordinary linear models it can also be shown that the least squares method
provides the best possible estimator of model parameters in a certain sense and that the least
squares method coincides with the Maximum Likelihood Estimation in that case. Likewise,
for GLMs a general method for the estimation of parameters can be established.

2.3 Maximum Likelihood Estimation

Since the density or mass function of the response variable can be written in exponen-
tial form (2.1) in GLMs, we are also able to obtain a general expression for the Maximum
Likelihood Estimation.

For n independent observations the log-likelihood is

L(β ) = log
n

∏
i=1

f (yi;θi,φ) =
n

∑
i=1

log f (yi;θi,φ) =
n

∑
i=1

yiθi−b(θi)

a(φ)
+

n

∑
i=1

c(yi,φ).
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To maximize the log-likelihood we will compute its partial derivatives.
In an ordinary linear model, the parameter vector β determined the means µi of the normally
distributed response variables. In a GLM it determines the intermediate vector η , which in
turn determines the means µi of the response vector and that the natural parameters θi in
exponential family form. Therefore we have with log f (yi,θi,φ) =: Li, that

∂Li
∂β j

=
∂Li
∂θi

∂θi
∂ µi

∂ µi
∂ηi

∂ηi
∂β j

.

by the chain rule. Since µi = b′(θi) and Var(Yi) = b′′(θi)a(φ) by Theorem 2.7, it holds

∂Li
∂θi

=
yi−b′(θi)

a(φ)
=

yi−µi
a(φ)

and
∂ µi
∂θi

= b′′(θi) =
Var(Yi)

a(φ)
.

Furthermore we have ∂ηi/∂β j = xi j due to ηi = ∑
p
j=1 β jxi j. Overall this yields

∂Li
∂β j

=
∂Li
∂θi

∂θi
∂ µi

∂ µi
∂ηi

∂ηi
∂β j

=
yi−µi
a(φ)

a(φ)
Var(Yi)

∂ µi
∂ηi

xi j =
(yi−µi)xi j

Var(Yi)

∂ µi
∂ηi

. (2.4)

Finally, summing over all n yields the desired likelihood equations.

Definition 2.10 (Likelihood equations for a GLM). The expressions

∂L(β )
∂β j

=
n

∑
i=1

(yi−µi)xi j

Var(Yi)

∂ µi
∂ηi

= 0, j = 1,2, ..., p, (2.5)

where ηi = ∑
p
j=1 β jxi j = g(µi) for the link function g, are called the Likelihood equations.

Remark 2.11. It has to be verified, that the resulting extreme values are indeed maxima, but
in most models this is given. For example, according to [1] it can generally be shown, that
the log likelihood always is a concave function when we use the canonical link function.
For a Poisson GLM, that is shown in an example at the end of the chapter.

2.4 Fitting Generalized Linear Models

The likelihood equations (2.5) are usually nonlinear in β̂ . A possible method to numer-
ically solve these is the Newton-Raphson Method, i.e.

β
(t+1) = β

(t)− (H(t))−1u(t),

with u = (∂L(β )/∂β1, ...,∂L(β )/∂βp)
T and the Hessian matrix H with Hab = ∂ 2L(β )/∂βa∂βb

evaluated at β (t), assuming H(t) is nonsingular at every step.
Recall that in general this method converges locally to a zero of ∂L(β )/∂β .
Due to Remark 2.11, this is necessarily a global maximum of L(β ) if we use the canonical
link function.

A more specific iterative method for solving likelihood equations is the Fisher Scoring.
It is similar to the Newton-Raphson method but factors in the likelihood of all possible
realizations instead of just the sample observations in the Hessian matrix, i.e. it uses a
modification of the derivative of ∂L(β )/∂β for the Newton step.
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Definition 2.12. The expected Fisher information matrix is defined as the negative of the
expectation, integrating over y, of the Hessian matrix H as above, i.e.

J(β ) =−Ey(∂
2L(β )/∂βa∂βb)a,b=1,..,p.

The formula for Fisher scoring is

β
(t+1) = β

(t)+(J(t))−1u(t).

Remark 2.13. The negative of the Hessian itself is sometimes called observed Fisher infor-
mation. The Fisher information tells us how curved the log-likelihood L(β ) is (averaging out
the sample in J) for a fixed parameter β . Therefore a small value of the Fisher information
for the ML estimator indicates that we do not have much information about the parameter
β , since the likelihood does not change much for varying parameter values at the peak.

Example 2.14. We illustrate the two methods in an example from [1, Chapter 4.5.3] for
which the maximum of L can be seen and compared directly, a sample proportion y from a
bin(n, p) distribution.
Naturally, the maximum p̂ of the likelihood function should match the sample proportion
y. Let us verify that by considering the log likelihood, neglecting the binomial coefficient
because it does not effect its derivatives,

L(p) = log(pny(1− p)n−ny) = ny logp+(n−ny)log(1− p).

Taking the first two derivatives of L(p) gives

u = (ny−np)/[p(1− p)], H =−(ny/p2 +(n−ny)/(1− p)2),

i.e. we indeed have u= 0 for p= y (p 6= 0 and p 6= 1). Therefore the Newton-Raphson method
is given by

p(t+1) = p(t)+

[
ny

p(t)
2 +

n−ny
(1− p(t))2

]−1
ny−np(t)

p(t)(1− p(t))
.

Note, that this correctly adjusts p(t) up if y > p(t) and reverse, since the only variable term
for the sign of the addition is n(y− p(t)). When p(t) = y, no adjustment occurs and p(t+1) = y,
which is the correct answer for p̂.
For Fisher scoring, we consider, with k := ny,

−Ey(H) =−
n

∑
k=0

(
− k

p2 −
n− k

(1− p)2

)(
n
k

)
pk(1− p)n−k = ...=

n
p(1− p)

.

Therefore a step of Fisher scoring has the form

p(t+1) = p(t)+
[

n
p(t)(1− p(t))

]−1 ny−np(t)

p(t)(1− p(t))
= p(t)+(y− p(t)) = y.

So in this example the Fisher scoring method gives the correct value of p̂ after a single
iteration, whereas you can check that the Newton-Raphson method needs more steps for
most starting values.

Remark 2.15. Fisher scoring can be interpreted as an iteratively reweighted least squares
(IRLS) method, see [1, Chapter 4.5.4] for details.
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Simplifications with canonical link

Finally, we notice that fitting GLMs is simple if we use the canonical link function in
our model. Recall that then the link function transforms µi to the natural parameter θi for
all i, so we have

θi = ηi =
p

∑
j=1

β jxi j,

and
∂ µi/∂ηi = ∂ µi/∂θi = ∂b′(θi)/∂θi = b′′(θi),

due to µi = b′(θi) by Theorem 2.7. Together with the second equation in this theorem,
Var(Yi) = b′′(θi)a(φ), this implies that (2.4) simplifies to

∂Li
∂β j

=
(yi−µi)

Var(Yi)
b′′(θi)xi j =

(yi−µi)xi j

a(φ)
. (2.6)

Moreover, taking the second partial derivative gives

∂ 2Li
∂βh∂β j

=−
xi j

a(φ)

(
∂ µi
∂βh

)
,

which does not depend on yi. Therefore we get

∂
2L(β )/∂βh∂β j = E[∂ 2L(β )/∂βh∂β j]

and the Newton-Raphson method coincides with Fisher scoring when we use the canonical
link function for our model.

Example 2.16. Let’s look back at Example 1.2. We noticed, that the assumption of nor-
mally distributed responses cannot be completely accurate. Instead, an appropriate distribu-
tion to model claims expenditures has been found to be the Poisson distribution in practice.
So we will build a GLM for Example 1.2 with Poisson responses and the canonical log-link
function.
We have established that the Poisson distribution can be written in natural exponential form,
i.e. a(φ) = 1. So according to (2.6) the likelihood equations for the Poisson GLM with
canonical link are

10

∑
i=1

(yi−µi)xi j = 0, j = 1,2.

in our example. For a normal model, as we have seen in the preliminaries, these are the
normal equations. Now the difference is that we do not have µ = Xβ , but log(µ) = Xβ , i.e.
µ = exp(Xβ ).
So we get the nonlinear likelihood equations

10

∑
i=1

(yi− exp(xi1β1 + xi2β2))xi j = 0, j = 1,2.
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To solve these nonlinear equations, we can use the Newton-Raphson or Fisher scoring al-
gorithm, which, as we have just seen, coincide when we model with the canonical link
function. We have

u =

(
10

∑
i=1

(yi− exp(β1 + xi2β2)),
10

∑
i=1

(yi− exp(β1 + xi2β2))xi2

)T

,

since xi1 = 1 ∀i in our example. Furthermore,

H =

(
∑

10
i=1−exp(β1 + xi2β2) ∑

10
i=1−exp(β1 + xi2β2)xi2

∑
10
i=1−exp(β1 + xi2β2)xi2 ∑

10
i=1−exp(β1 + xi2β2)x2

i2

)
.

Since we only have a 2×2 matrix here, the inversion of the Hessian will be no challenge.
The choice of the starting estimate will generally not be crucial either, because the log
likelihood

L(β ) =
n

∑
i=1

yiθi− log(yi!)︸ ︷︷ ︸
linear in θ

−exp(θi)︸ ︷︷ ︸
concave in θ

is a strictly concave function in the natural parameter θ here, so it has a unique global
maximum. We choose

β
(0) =

(
1
1

)
.

Now all that is left is to write a Newton-Raphson routine to get the iterates

β
(t+1) = β

(t)− (H(t))−1u(t).

Algorithm 1 Newton Algorithm for simple Poisson GLM fitting
1: while ||β − β̃ ||> 10−7 do
2: u, H = 0;
3: for i = 0 to (time) T do
4: z = exp(β [0]+x[i]*β [1]);
5: u[0] += y[i] - z;
6: u[1] += (y[i] - z)*x[i];
7: H[0][0] -= z*x[i]*x[i]; . H will be inverted Hessian
8: H[0][1] += z*x[i];
9: H[1][1] -= z;

10: end for
11: D = H[0][0]*H[1][1] - H[0][1]*H[0][1]; . H symmetric
12: if |D|< 10−6 then
13: printf("Hessian matrix is not invertible in step .."); return 0;
14: end if
15: H= H/D;
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16: β̃ =β ;
17: β [0] -= (H[0][0]*u[0] + H[0][1]*u[1]);
18: β [1] -= (H[0][1]*u[0] + H[1][1]*u[1]);
19: . here stop criterion in implementation
20: end while
21: return β ;

After 10 iterations the algorithm converges to

β̂ =

(
5,19740
0,04686

)
.

So the predicted claims expenditures in the Poisson GLM for the next year are

exp(5,19740+0,04686×11) = 302,7 [million euros],

which are 6 million more than the prediction in the ordinary linear model.

1 2 3 4 5 6 7 8 9 1011

150200250300350

poisson dist
mean function

car theft

Year

claims exp.

Figure 2.1: Poisson GLM

The graphic shows the exponential estimation function in a Poisson GLM with canonical
link. Furthermore, one can see that the variance grows with the fitted expected values in the
model, since we assume an underlying Poisson distribution.
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As already stated, the Poisson distribution has shown to be suited in many applications
for the estimation of claims expenditures. However, there is no mathematical evidence that
this assumption is valid for a new situation. Therefore, we will look at an alternative frame-
work for regression in the next chapter, that does not make assumptions on the specific
underlying distribution.
The results will be theoretically weaker then, of course, but especially when we do not have
a justification for assuming a specific distribution, this next chapter will give us an oppor-
tunity to still make profound conclusions. Especially in the modern context of Big Data,
i.e. having large sample sizes of some new data without having much structural information
about it, this "Brute Force" approach is quite helpful.



Chapter 3

Regression models in the framework
of Machine Learning

In Generalized Linear Models the distribution of the response variable Y methods was
taken out of an exponential family. However, sometimes it may not be possible to make
any reasonable assumptions on the underlying distributions. In that cases, we can use the
alternative Machine Learning framework, where no assumptions on the specific distribution
of Y have to be made.

3.1 Basic Framework

The wording for the elements of a regression model is different in the Machine Learning
framework. We will give the main correspondences.

Examples are the sample data we have given.
Features correspond to the explanatory variables.
Labels correspond to the values of the response variables.

Definition 3.1. Let Y ⊆ R be the set of labels and X ⊆ Rp the set of feature vectors in a
regression problem.
Then a hypothesis is a mapping h : X→ Y.
A set of hypotheses H is simply called hypothesis set.

Definition 3.2. A loss function
L : Y ×Y → R+

measures the difference between a predicted label and a true label.
Suited to the statistical approach, a common loss function is the squared loss

L(y,y′) = (y− y′)2.

17
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Remark 3.3. We only consider bounded loss functions in this chapter. So when we are
using the squared loss, Y will typically be a bounded interval I ⊂ R. In most practical
applications one can establish a reasonable bound for the response variable. For instance,
in our example of claims requirements due to insured car theft, we can take the total value
of all insured cars as upper bound and 0 as lower bound.

Definition 3.4 (Generalization Error). Given a hypothesis h ∈ H, a loss function L and
an underlying distribution D with density f over Z = X ×Y , i.e. a random variable Z̃ :
(X ×Y,B(X ×Y ),P)→ (R,B(R)),(x,y) 7→ L(h(x),y) with density f , the generalization error
of h is defined by

R(h) = E(x,y)∼D[L(h(x),y)] = E[Z̃] =
∫

Z
L(h(x),y) f (z)dz. (3.1)

However, the generalization error is not accessible to the learner since the underlying
distribution D is considered as completely unknown in this chapter.
Therefore we define the empirical error of a hypothesis on the labeled sample S.

Definition 3.5 (Empirical Error). Given a hypothesis h ∈ H, a loss function L and a sample
S = ((x1,y1), ...,(xm,ym)) drawn i.i.d. according to a distribution D, the empirical error of h
is defined by

R̂(h) =
1
m

m

∑
i=1

L(h(xi),yi). (3.2)

We can directly check that the empirical error is unbiased.

Proposition 3.6.
E[R̂(h)] = R(h).

Proof. Consider random variables Zh
i : (X×Y,B(X×Y ),P)→ (R,B(R)),(xi,yi) 7→ L(h(xi),yi)

with densities fi = f ∀i = [1,m] and Zh
= 1/m ∑

m
i=1 Zh

i . Then we have

ES∼Dm [R̂(h)] = E[Zh
] =

1
m

m

∑
i=1

E[Zh
i ] = E[Zh

1 ] = E(x,y)∼D [L(h(x),y)] = R(h)

due to the linearity of the expectation and since the sample is drawn i.i.d.

Remark 3.7. In the following we will mainly use the notations E(x,y)∼D and ES∼Dm instead
of explicitly introducing corresponding random variables.

Given a hypothesis set H of functions h : X→Y , the regression problem consists of using
the labeled sample S to find a hypothesis h ∈ H with small expected loss or generalization
error R(h).
As mentioned, we do not have direct access to the generalization error of a hypothesis.
Nevertheless, it is possible to bound the generalization error in terms of the empirical error.
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3.2 Generalization bounds - simplified case

First we consider the simplified case that the hypothesis set is finite. In that case we
only need Hoeffding’s inequality to derive generalization bounds.

Lemma 3.8 (Hoeffding’s inequality). Let X1, ...,Xm be independent random variables with
Xi taking values in [ai,bi] for all i ∈ [1,m]. Let Sm = ∑

m
i=1 Xi. Then, for any ε > 0,

Pr[Sm−E[Sm]≥ ε]≤ exp(−2ε
2/

m

∑
i=1

(bi−ai)
2),

Pr[Sm−E[Sm]≤−ε]≤ exp(−2ε
2/

m

∑
i=1

(bi−ai)
2),

Proof. The proof mainly consists of applying Markov’s inequality to exp(t(Sm−E[Sm])) for
t > 0 and then using the following lemma.

Lemma 3.9 (Hoeffding’s lemma). Let X be a random variable with E[X ] = 0 and a≤ X ≤ b
with b > a. Then, for any t > 0, the following inequality holds:

E[etX ]≤ exp
(

t2(b−a)2

8

)
.

Proof. The following proof of Hoeffding’s lemma is given in [2, Appendix D]. Since x→ etx

is convex for all t ∈ R, we have

etx ≤ b− x
b−a

eta +
x−a
b−a

etb

for all x ∈ [a,b] and t ∈ R. This yields

E[etX ]≤ E[
b−X
b−a

eta +
X−a
b−a

etb]
E[X ]=0
=

b
b−a

eta +
−a

b−a
etb = eφ(t)

with φ(t) = log( b
b−a eta + −a

b−a etb) = ta+ log( b
b−a +

−a
b−a et(b−a)).

Now calculating the first and second derivative of φ yields φ ′(0) = 0 and φ ′′(t) ≤ (b−a)2
4 for

all t > 0, for details see [2, Lemma D.1]. Therefore the second order Taylor expansion of φ

implies that there exists θ ∈ [0, t], t > 0, such that

φ(t) = φ(0)+ tφ ′(0)+
t2

2
φ
′′(θ)≤ t2 (b−a)2

8
.

This lemma allows us to show Hoeffding’s inequality. Since x→ ex is monotone, we
have

Pr[Sm−E[Sm]≥ ε] = Pr[et(Sm−E[Sm]) ≥ etε ]
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for all t > 0. Therefore we can apply Markov’s inequality to get

Pr[Sm−E[Sm]≥ ε] = Pr[et(Sm−E[Sm]) ≥ etε ]≤ e−tεE[et(Sm−E[Sm])] =
m

∏
i=1

e−tεE[et(Xi−E[Xi])],

because the Xi are independent. Using Lemma 3.9, this can be further bounded by
m

∏
i=1

e−tε et2(bi−ai)
2/8 = e−tε et2

∑
m
i=1(bi−ai)

2/8 ≤ e−2ε2/∑
m
i=1(bi−ai)

2

by setting t = 4ε/∑
m
i=1(bi−ai)

2.

Pr[Sm−E[Sm]≤−ε] = Pr[E[Sm]−Sm ≥ ε] can be bounded analogously.

Remark 3.10. A well-known inequality to bound the probability of deviation from the mean
is Chebyshev’s inequality. It does not require fixed bounds on the values of the random vari-
able but additionally to Hoeffding’s inequality requires knowledge about its variance.

Note though, that even if we have that knowledge, Hoeffding’s inequality can give sharper
bounds in some cases.

Example 3.11. To see that, consider independent random variables X1, ...,Xm that map to
([0,1],B[0,1]), where E[Xi] = µ and Var[Xi] = σ2 for all i ∈ 1, ..,m.
Since the Xi are independent, the variance of the sum Sm = ∑

m
i=1 Xi is given by mσ2 and the

variance of the empirical average X = 1
m ∑

m
i=1 Xi by σ2

m . Therefore Chebyshev’s inequality
yields the bound

Pr[|X−µ| ≥ ε]≤ σ2

mε2 .

On the other hand, Hoeffding’s inequality gives

Pr[|X−µ| ≥ ε] = Pr[|Sm−E[Sm]| ≥ εm]≤ 2e−2ε2m.

For example, consider a sequence of unbiased coin tosses, i.e. Xi : {heads, tails} → {0,1}
with E[Xi] = 0.5 and Var(Xi) = 0.25 for all i. Furthermore, take ε = 0.1 and m = 500. Then
Chebyshev’s inequality gives Pr[|X−0.5| ≥ 0.1]≤ 0.05, whereas Hoeffding’s inequality gives
the 500 times sharper bound Pr[|X−0.5| ≥ 0.1]≤ 0.0001.
For a general sequence of (i.i.d.) biased coin tosses with m = 500 and ε = 0.1, we have the
relationship

Pr.boundChebyshev =
σ2

0.000454
Pr.boundHoeffding,

i.e. the Chebyshev bound improves with lower variance in comparison.

As mentioned in Remark 3.3, we restrict ourselves to the case of bounded loss func-
tions, that is, L(y,y′) ≤M for all y,y′ ∈ Y . Under this assumption we can apply Hoeffding’s
inequality to establish generalization bounds for finite hypothesis sets.
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Theorem 3.12. Assume that the loss function is bounded by M and that the hypothesis set
H is finite. Then, for any δ > 0, with probability at least 1−δ , the following inequality holds
for all h ∈ H:

R(h)≤ R̂(h)+M

√
log|H|+ log(1/δ )

2m
.

Proof. We have already established that E[R̂(h)] =R(h). Therefore we can apply Hoeffding’s
inequality with Xi =

1
m L(h(xi),yi) taking values in [0, M

m ], which yields

PrS∈Dm [R(h)− R̂(h)≥ ε] = PrS∈Dm [R̂(h)−R(h)≤−ε]≤ exp(−2mε
2/M2). (3.3)

for any h ∈ H. By the union bound, this implies

Pr[∃h ∈ H| R(h)− R̂(h)> ε]≤ ∑
h∈H

Pr[R(h)− R̂(h)> ε]≤ |H|exp(−2mε
2/M2). (3.4)

Now we can set |H|exp(−2mε2/M2) =: δ (> 0) and therewith replace ε by δ in (3.4). After
turning around the inequality this yields

PrS∈Dm

[
∀h ∈ H

∣∣∣∣ R(h)− R̂(h)≤M

√
log|H|+ log(1/δ )

2m

]
≥ 1−δ .

3.3 Rademacher complexity

The main task is now to extend the preceding theorem to infinite hypothesis sets. To
do that, we will reduce the infinite set of hypotheses to the analysis of finite sets using the
so-called Rademacher complexity notion.

To each h : X→Y , we can associate a function g that maps (x,y)∈X×Y to L(h(x),y), whereby
L is some loss function that can be bounded by an interval [0,M]. So the following formal
definitions of the empirical and average Rademacher complexity fit to our problem.

Definition 3.13. Let G be a family of (measurable) functions mapping from Z = X ×Y to
[a,b] and S = (z1, ...,zm) a fixed sample of size m with elements in Z. Then, the empirical
Rademacher complexity of G with respect to the sample S is defined as

R̂S(G) = Eσ [sup
g∈G

1
m

m

∑
i=1

σig(zi)],

where σ = (σ1, ..,σm)
T with σi being a independent uniform random variable taking values

in {−1,+1}. The random variables σi are called Rademacher variables or random noise.

Remark 3.14. If we have a countable family of measurable functions G, it can easily be
shown that the supg∈G g(z) is measurable as well, since any σ−algebra is closed under count-
able unions and intersections.
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For families of functions with uncountable index set this can theoretically fail.
However, since according to [2] it tends to work for uncountable families of hypotheses and
their associated loss functions as well, we do not exclude them from the definition, but just
mention it here and assume measurable suprema in the following.

Proposition 3.15. The empirical Rademacher complexity R̂S(G) is nonnegative.

Proof. Consider the function H(σ) = supg∈G
1
m ∑

m
i=1 σig(zi). H(σ) is convex as the supre-

mum of linear functions. Thus Jensen’s inequality yields

Eσ [sup
g∈G

1
m

m

∑
i=1

σig(zi)]≥ sup
g∈G

1
m

m

∑
i=1

E[σi]g(zi) = 0,

since E[σi] = 0 ∀i.

Remark 3.16. An interpretation of the empirical Rademacher complexity is given in [2]:
Let gS denote the vector of values taken by function g over the sample S:

gS = (g(z1), ...,g(zm))
T .

Then, the empirical Rademacher complexity can be rewritten as

R̂S(G) = Eσ [sup
g∈G

σ ·gS
m

].

Notice that, since E(σ) = 0, the covariance Cov(gS,σ) = E[gS ·σ ]−E[gS] ·E[σ ] = E[gS ·σ ]

corresponds to the inner product of gS and σ , so the inner product σ ·gs measures the corre-
lation of gs with the vector σ . Thus, the supremum supg∈G σ ·gs/m measures the correlation
of the function class G with σ over the sample S.
So overall, the empirical Rademacher complexity measures how well the function class G
correlates with random noise over the sample S, on average.

Larger function classes tend to have a higher empirical Rademacher complexity since the
supremum is taken over more functions. Furthermore, the empirical Rademacher complex-
ity of a function class that contains only a single function is zero, because the terms in the
expectation cancel each other out.

Definition 3.17. Let D denote the distribution according to which samples are drawn. For
any integer m ≥ 1, the Rademacher complexity of G is the expectation of the empirical
Rademacher complexity over all samples of size m drawn according to D:

Rm(G) = ES∼Dm [R̂S(G)].

To be able to establish generalization bounds based on Rademacher complexity, we
will need to generalize Hoeffding’s inequality. Therefore we first need to show Azuma’s
inequality, which is stated in the context of martingale difference sequences.
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Definition 3.18. A stochastic process {Vn}n∈N on (Ω,F ,P) to (R,B(R)) is a martingale
difference sequence with respect to a stochastic process {Xn}n∈N : (Ω,F )→ (R,B(R)), if
for all i > 0, Vi ∈ σ(X1, ..,Xi) and

E[Vi+1|X1, ..,Xi] = 0,

i.e. if Vi is σ(X1, ..,Xi)-measurable and the conditional expectation of Vi+1 with respect to
the sub-σ-field σ(X1, ..,Xi) of F is zero for all i > 0.

Remark 3.19. Note that this definition implies that if {Yt}t∈N0 is a martingale, then
{Wt}t∈N = {Yt −Yt−1}t∈N is indeed a martingale difference sequence with respect to the σ-
algebra generated by {Yt}t∈N0 , since for all t > 0, Wt = Yt −Yt−1 ∈ σ(Y0, ..,Yt), and

E[Wt+1|Y0, ..,Yt ] = E[Yt+1|Y0, ..,Yt ]−E[Yt |Y0, ..,Yt ] = Yt −Yt = 0.

Lemma 3.20 (Generalized Hoeffding lemma). Let V and X1, ..,Xn be random variables
satisfying E[V |X1, ..,Xn] = 0 and, for some σ(X1, ..,Xn)-measurable random variable Z and
constants a and b, the inequalities:

Z +a≤V ≤ Z +b.

Then, for all t > 0, the following upper bound holds:

E[etV |X1, ..,Xn]≤ et2(b−a)2/8.

In particular, we get the usual Hoeffding lemma for σ(X1, ..Xn) = { /0,Ω}.

Proof. Note that we can follow the proof of Lemma 3.9 by taking Z + a, Z + b instead of
a, b and considering conditional expectations E(·|X1, ..,Xn) instead of E(·), since

E[
Z +b−V

b−a
et(Z+a)+

V −Z−a
b−a

et(Z+b)|X1, ..,Xn] =
Z +b
b−a

et(Z+a)− Z +a
b−a

et(Z+b)

because Z is σ(X1, ..,Xn)-measurable and E[V |X1, ..,Xn] = 0.

For a martingale {Yt}t∈N0 , so a martingale difference sequence {Wt}t∈N = {Yt−Yt−1}t∈N,
we have ∑

m
i=1Wi = Ym−Y0. In this aspect the following inequality establishes a bound on

martingales with bounded differences, using the generalized Hoeffding lemma.

Lemma 3.21 (Azuma’s inequality). Let {Vn}n∈N be a martingale difference sequence with
respect to {Xn}n∈N, and assume that for all i > 0 there is a constant ci ≥ 0 and a random
variable Zi ∈ σ(X1, ..,Xi−1) that satisfies

Zi ≤Vi ≤ Zi + ci.

Then, for all ε > 0 and m, the following inequalities hold:

Pr

[
m

∑
i=1

Vi ≥ ε

]
≤ exp

(
−2ε2

∑
m
i=1 c2

i

)
,

Pr

[
m

∑
i=1

Vi ≤−ε

]
≤ exp

(
−2ε2

∑
m
i=1 c2

i

)
,
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Proof. Define Sk = ∑
k
i=1Vk for any k ∈ [1,m]. We have

Pr[Sm ≥ ε]≤ e−tεE[etSm ]

for all t > 0 as in the proof of Hoeffding’s inequality. Due to the law of total expectation
and since etSm−1 is σ(X1, ..,Xm−1)-measurable, this term equals

e−tεE
[
E[etSm ]|X1, ..,Xm−1

]
= e−tεE

[
etSm−1E[etVm |X1, ..,Xm−1]

]
≤ e−tεE[etSm−1 ]et2c2

m/8

due to Lemma 3.20 with Zm, a = 0 and b = cm.
Iterating that argument yields the bound

e−tε et2
∑

m
i=1 c2

i /8 = e−2ε2/∑
m
i=1 c2

i

with t = 4ε/∑
m
i=1 c2

i .
Again, Pr

[
∑

m
i=1Vi ≤−ε

]
= Pr

[
∑

m
i=1−Vi ≥ ε

]
can be bounded analogously, since {−Vn}n∈N is

also a martingale difference sequence with respect to {Xn}n∈N and −Zi+ci ≤−Vi ≤−Zi.

Now we can use Azuma’s inequality to show the desired generalization to Hoeffding’s
inequality.

Theorem 3.22 (McDiarmid’s inequality). Let X1, ..,Xm be independent random variables
taking values in the set X and assume that there exist c1, ...,cm > 0 such that f : X m→ R
satisfies the following conditions:

| f (x1, ..,xi, ..,xm)− f (x1, ..,x
′
i, ..,xm)| ≤ ci, (3.5)

for all i ∈ [1,m] and any points x1, ...,xm,x′i ∈X . Let f (S) denote f (X1, ...,Xm), then, for all
ε > 0, the following inequalities hold:

Pr[ f (S)−E[ f (S)]≥ ε]≤ exp

(
−2ε2

∑
m
i=1 c2

i

)
,

Pr[ f (S)−E[ f (S)]≤−ε]≤ exp

(
−2ε2

∑
m
i=1 c2

i

)
.

Proof. Define random variables

V = f (S)−E[ f (S)], V1 =E[V |X1]−E[V ] and Vk =E[V |X1, ..,Xk]−E[V |X1, ..,Xk−1] for k ∈ [2,m].

Then we have
V = E[V |X1, ..,Xm] = E[V |X1, ..,Xm]−E[V ]︸︷︷︸

=0

=
m

∑
k=1

Vk.

Furthermore, by the tower property of the conditional expectation it holds that

E[E[V |X1, ..,Xk]|X1, ..,Xk−1] = E[V |X1, ..,Xk−1].
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This implies

E[Vk|X1, ..,Xk−1] = E[E[V |X1, ..,Xk]|X1, ..,Xk−1]−E[E[V |X1, ..,Xk−1]|X1, ..,Xk−1]︸ ︷︷ ︸
=E[V |X1,..,Xk−1]

= 0,

so {Vk}k∈[1,m] is a martingale difference sequence with respect to {Xk}k∈[1,m].

Until now we have that f (S)−E[ f (S)] can be expressed as a sum over a martingale dif-
ference sequence. Note, that we can express the summands as

Vk = E[ f (S)|X1, ..,Xk]−E[ f (S)|X1, ..,Xk−1],

because E[E[ f (S)]|X1, ..Xk] = E[ f (S)] = E[E[ f (S)]|X1, ..Xk−1], so that terms cancel each other
out. Therefore

Wk = sup
x
E[ f (S)|X1, ..,Xk−1,x]−E[ f (S)|X1, ..,Xk−1]

is an upper bound for Vk and

Uk = inf
x
E[ f (S)|X1, ..,Xk−1,x]−E[ f (S)|X1, ..,Xk−1]

is a lower bound for Vk.
By (3.5) it holds for any k ∈ [1,m] that

Wk−Uk = sup
x,x′

E[ f (S)|X1, ..,Xk−1,x]−E[ f (S)|X1, ..,Xk−1,x
′]≤ ck,

i.e. Uk ≤Vk ≤Uk + ck with Uk ∈ σ(X1, ..,Xk−1).
Therefore we can apply Azuma’s inequality to V = f (S)−E[ f (S)] = ∑

m
i=1Vk, which yields

the statement.

Remark 3.23. Note, that Hoeffding’s inequality is indeed a special case of McDiarmid’s
inequality by setting f (x1, ..,xm) = ∑

m
i=1 xi.

Using McDiarmid’s inequality we will now proof a generalization bound result for loss
functions that can be bounded by [0,1]. For the general result in regression, we will have to
rescale that bound to an interval [0,M] with M arbitrary in the next section.

Theorem 3.24. Let G be a family of functions mapping from Z with an underlying distribu-
tion D to [0,1] and {z1, ..,zm} a fixed sample from Z. Then, for any δ > 0, with probability at
least 1−δ , each of the following holds for all g ∈ G:

Ez∼D[g(z)]≤
1
m

m

∑
i=1

g(zi)+2Rm(G)+

√
log(1/δ )

2m
and

Ez∼D[g(z)]≤
1
m

m

∑
i=1

g(zi)+2R̂S(G)+3

√
log(2/δ )

2m
.



26 Regression models in the framework of Machine Learning

Proof. In [2, Chapter 3.1] the following proof is given.
For any sample S = (z1, ...,zm) and any g ∈ G, we denote by ÊS[g] the empirical average of g
over S, i.e.

ÊS[g] =
1
m

m

∑
i=1

g(zi).

The proof consists of applying McDiarmid’s inequality to the function Φ defined for any
sample S by

Φ(S) = sup
g∈G

E[g]− ÊS[g].

Let S and S’ be two samples differing by exactly one point, say zm in S and z′m in S’. Then,
since the difference of suprema does not exceed the supremum of the difference, we have

Φ(S′)−Φ(S)≤ sup
g∈G

(
ÊS[g]− ÊS′ [g]

)
= sup

g∈G

g(zm)−g(z′m)
m

≤ 1
m
,

because g is bounded by [0,1]. Similarly, we can obtain Φ(S)−Φ(S′)≤ 1
m , thus

|Φ(S)−Φ(S′)| ≤ 1
m
.

Therefore applying McDiarmid’s inequality gives

Pr[Φ(S)−E[Φ(S)]≥ ε]≤ exp(−2mε
2)

Setting the right hand side to be equal to δ/2, analogous to the proof of Theorem 3.12,
yields for any δ > 0, with probability at least 1− δ

2 ,

Φ(S)≤ E[Φ(S)]+

√
log(2/δ )

2m
. (3.6)

The expectation on the right-hand side can be rewritten to

ES[Φ(S)] = ES

[
sup
g∈G

ES(g)− ÊS(g)

]
= ES

[
sup
g∈G

ES′ [Ê
S′(g)− ÊS(g)]

]
,

because the empirical average is unbiased, so ES[g] = ES′ [ÊS′(g)].
This can be bounded by

ES,S′ [sup
g∈G

ÊS′(g)− ÊS(g)] = ES,S′ [sup
g∈G

1
m

m

∑
i=1

(g(z′i)−g(zi))],

because the supremum function is convex, so Jensen’s inequality can be applied.
Now we can add Rademacher variables σi to the term,

Eσ ,S,S′ [sup
g∈H

1
m

m

∑
i=1

σi(g(z′i)−g(zi))],
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which does not change the expectation, because the integration over S is equivalent to the
one over S′, so for σi =−1 just the order of the summands within the expectation is swapped.
Since the supremum is sub-additive, this term can further be bounded by

Eσ ,S′ [sup
g∈G

1
m

m

∑
i=1

σig(z′i)]+Eσ ,S[sup
g∈G

1
m

m

∑
i=1
−σig(zi)] = 2 Eσ ,S[sup

g∈G

1
m

m

∑
i=1

σig(zi)] = 2 Rm(G),

because σi and −σi are identically distributed.
So overall we have, with probability at least 1−δ ,

sup
g∈G

E[g]− ÊS[g] = Φ(S)≤ E[Φ(S)]+

√
log(1/δ )

2m
≤ 2 Rm(G)+

√
log(1/δ )

2m
,

which implies the first inequality in the theorem.
To get to the second inequality, observe that changing one point in S changes R̂S(G) by at
most 1/m. Therefore we can apply McDiarmid’s inequality again, to get, with probability
at least 1−δ/2,

Rm(G)≤ R̂S(G)+

√
log(2/δ )

2m
.

Combined with (3.6) this yields, with probability at least 1−δ ,

sup
g∈G

ES[g]− ÊS[g] = Φ(S)≤ 2R̂S(G)+3

√
log(2/δ )

2m
.

3.4 Generalization bounds

Now we apply the Rademacher complexity notion to generalize Theorem 3.12 to infi-
nite hypothesis sets.
To do that, we first establish an upper bound on the Rademacher complexity of bounded Lp

loss functions using the following lemma.
It tells us that if all hypotheses in a hypothesis set H get linked with a Lipschitz function,
then the change of the Rademacher complexity can be bounded by the corresponding Lips-
chitz constant.

Lemma 3.25 (Talagrand’s lemma). Let Φ : R→ R an L-Lipschitz function. Then, for any
hypothesis set H of real-valued functions, the following inequality holds:

R̂S(Φ◦H)≤ L R̂S(H).

Proof. See [2, Lemma 4.2].
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Theorem 3.26. Let p≥ 1 and Hp = {(x,y)→ |h(x)−y|p| : h ∈H}. Assume that |h(x)−y| ≤M
for all (x,y) ∈ X×Y and h ∈ H. Then, for any sample S, the following inequality holds:

R̂S(Hp)≤ pMp−1R̂S(H). (3.7)

Proof. Consider the function φp : x→ |x|p. We have Hp = {φp ◦ h : h ∈ H ′}, where H ′ =
{(x,y)→ h(x)− y : h ∈ H}.
Note, that φp is Lipschitz over [−M,M] with constant pMp−1 for p≥ 1, simply by the mean
value theorem. Using Lemma 3.25 this gives

R̂S(Hp)≤ pMp−1R̂S(H
′).

Furthermore,

R̂S(H
′) =

1
m
Eσ [sup

h∈H

m

∑
i=1

(σih(xi)−σiyi)] =
1
m
Eσ [sup

h∈H

m

∑
i=1

σih(xi)]−
1
m
Eσ [

m

∑
i=1

σiyi] = R̂S(H),

since Eσ [∑
m
i=1 σiyi] = ∑

m
i=1Eσ [σi]yi = 0.

This finally allows us to state Rademacher complexity bounds for regression with bounded
Lp loss functions.

Theorem 3.27. Let p≥ 1 and Hp = {(x,y)→ |h(x)−y|p| : h ∈H}. Assume that |h(x)−y| ≤M
for all (x,y) ∈ X×Y and h ∈ H. Then, for any δ > 0, with probability at least 1− δ over a
sample S of size m, each of the following holds for all h ∈ H:

E[|h(x)− y|p]≤ 1
m

m

∑
i=1
|h(xi)− yi|p +2pMp−1Rm(H)+Mp

√
log(1/δ )

2m

E[|h(x)− y|p]≤ 1
m

m

∑
i=1
|h(xi)− yi|p +2pMp−1R̂S(H)+3Mp

√
log(2/δ )

2m
.

Proof. Theorem 3.24 applied to g(x,y) := (|h(x)−y|/M)p and the upper bound (3.7) directly
yield the result.

Regression algorithms

Since the generalization bounds in Theorem 3.27 are depended on the empirical errors,
a direct approach for regression algorithms is to seek the hypothesis that minimizes the
empirical error over all h ∈ H.
Moreover, we have also seen that the generalization bounds are better when we are using
hypothesis sets with relatively low Rademacher complexity. A function class that typically
fulfills this are linear functions.
So again, as a first algorithm, we consider the ordinary linear regression, now stated in the
Machine Learning framework.
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Example 3.28. (Linear regression) Consider the family of linear hypotheses,

H = {x→ w · x+b : w ∈ Rp,b ∈ R}.

Now in linear regression we determine the hypothesis in H with the smallest empirical mean
squared error. Thus, for a sample S = ((x1,y1), ...,(xn,yn)) ∈ (X×Y )n, we get the correspond-
ing optimization problem

min
w,b

1
n

n

∑
i=1

(w · xi +b− yi)
2

or in matrix form,
min
W

F(W ) =
1
n
||X W −Y ||2,

where

X =


1 x1
.. ..

.. ..

1 xn

 , W =


b

w1
..

wp

 and Y =


y1
..

..

yn

 .
We have already established the solution to this optimization problem in the preliminaries.

In the GLM chapter we used link functions to extend the linear regression and to model
nonlinear relationships. In the framework of Machine Learning, this is done by using spe-
cific kernel functions.

3.5 Kernel functions

Definition 3.29 (Kernel). A function K : X×X → R is called a kernel over X.

Now, rather that applying a non-linear function to the response as in the GLM chapter,
we transform the input space with some non-linear mapping. Also mappings to spaces
with much higher dimension will be possible. In those spaces we will then seek for linear
relationships again.
Thereby, instead of explicitly constructing some non-linear mapping from the input space X
to a possibly high-dimensional feature space and computing inner products in that, so-called
PDS kernels will allow us to implicitly do that.

Definition 3.30 (PDS kernel). A kernel K : X ×X → R is said to be positive definite sym-
metric (PDS) if for any (x1, ...,xm) ⊆ X , the matrix K = [K(xi,x j)]i, j ∈ Rm×m is symmetric
positive semidefinite.

Lemma 3.31 (Cauchy-Schwarz inequality for PDS kernels). Let K : X ×X → R be a PDS
kernel. Then, for any x,x′ ∈ X ,

K(x,x′)2 ≤ K(x,x)K(x′,x′).
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Proof. Since K is a PDS kernel, the matrix

K=

(
K(x,x) K(x,x′)

K(x′,x) K(x′,x′)

)

is symmetric positive semidefinite for all x,x′ ∈ X . Therefore the product of its eigenvalues,
det(K), is non-negative for all x,x′ ∈ X , i.e.

det(K) = K(x,x)K(x′,x′)−K(x,x′)K(x′,x)
K symmetric

= K(x,x)K(x′,x′)−K(x,x′)2 ≥ 0.

The following theorem shows that a PDS kernel does indeed correspond to an inner
product in some Hilbert space and can therefore be used to implicitly calculate inner prod-
ucts in higher dimensional spaces. Of course, it will be crucial again in applications to use
suited kernel functions that produce linear relationships.

Theorem 3.32. Let K : X ×X → R be a PDS kernel. Then, there exists a Hilbert space H
and a mapping Φ from X to H such that:

∀x,x′ ∈ X , K(x,x′) = 〈Φ(x),Φ(x′)〉.

H is called a feature space and Φ a feature mapping associated to K.

Proof. The following proof is given in [2, Theorem 5.2]. In that proof we construct a spe-
cific space and an operation on it, which is then shown to be an inner product.

For any x ∈ X , define Φ(x) : X → R via

∀x′ ∈ X : Φ(x)(x′) = K(x,x′).

Let H0 be the set of finite linear combinations of such functions Φ(x), i.e.

H0 =

{
∑
i∈I

aiΦ(xi) : ai ∈ R, xi ∈ X , card(I)< ∞

}
,

which forms a vector space over R.
Now we define an operation 〈·, ·〉 on H0 ×H0 for all f ,g ∈ H0 with f = ∑i∈I aiΦ(xi) and
g = ∑ j∈J b jΦ(x j) by

〈 f ,g〉= ∑
i∈I, j∈J

aib jK(xi,x′j) = ∑
j∈J

b j f (x′j) = ∑
i∈I

aig(xi).

At first, observe that 〈·, ·〉 is symmetric. Next, the last two equations show that 〈 f ,g〉 does not
depend on the particular representations of f and g, i.e. that 〈·, ·〉 is well-defined. Moreover,
they show that 〈·, ·〉 is bilinear. Furthermore we have for any f = ∑i∈I aiΦ(xi) ∈H0,

〈 f , f 〉= ∑
i, j∈I

aia jK(xi,x j)≥ 0 (3.8)
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because K is a PDS kernel. Thus, 〈·, ·〉 is a symmetric, positive semidefinite bilinear form.
So what is left to show for 〈·, ·〉 to be an inner product on H0 is 〈 f , f 〉= 0⇔ f = 0.

Inequality (3.8) actually also implies, combined with the bilinearity of 〈·, ·〉, that

∀ f1, .., fm ∈H0 ∀c1, ..,cm ∈ R :
m

∑
i, j=1

cic j〈 fi, f j〉=

〈
m

∑
i=1

ci fi,
m

∑
j=1

c j f j

〉
≥ 0,

Thus, 〈·, ·〉 is a PDS kernel on H0 and we can apply Lemma 3.31 on H0 to get

∀ f ∈H0 ∀x ∈ X : 〈 f ,Φ(x)〉2 ≤ 〈 f , f 〉〈Φ(x),Φ(x)〉. (3.9)

Moreover, by the definition of 〈·, ·〉, we have

∀ f = ∑
i∈I

aiΦ(xi) ∈H0 ∀x ∈ X : f (x) = ∑
i∈I

aiK(xi,x) = 〈 f ,Φ(x)〉. (3.10)

This yields

∀x ∈ X : | f (x)|2 = |〈 f ,Φ(x)〉|2
(3.9)
≤ 〈 f , f 〉〈Φ(x),Φ(x)〉= 〈 f , f 〉K(x,x),

i.e. 〈 f , f 〉 > 0 if there exists x ∈ X such that | f (x)| > 0. Clearly, also 〈 f , f 〉 = 0 for f = 0.
So 〈·, ·〉 is positive definite and defines an inner product on H0, which thereby becomes a
pre-Hilbert space. To conclude, recall that the pre-Hilbert space H0 can be completed to
form a Hilbert space H in which it is dense.

Remark 3.33. In the preceding proof we constructed a feature space H as a Hilbert space
of functions X → R. In that sense (3.10) also implies that the constructed feature space is a
so-called reproducing kernel Hilbert space, that is ∀ f ∈H,∀x ∈ X : f (x) = 〈 f ,K(x, ·)〉.
Note, that in those Hilbert spaces of functions point evaluation δx( f ) = f (x) is a continuous
linear functional, which is a useful property for further studies of kernel methods.

Example 3.34. Let us consider the family of polynomial kernels K(x,x′) = (xT x′+ c)d on
X = Rp, for which we get H∼= RN , i.e. finite-dimensional feature spaces.
Note, that the polynomial kernel K(x,x′) = (xT x′+ 1)2 on X = R2 corresponds to the inner
product in R6 with Φ(x) = (x2

1,x
2
2,1,
√

2x1x2,
√

2x1,
√

2x2). More generally, it can be shown
that for a polynomial kernel the dimension of a feature space is N =

(p+d
p
)
. So we can extend

the ordinary linear regression in this framework by considering the hypothesis set

H = {x 7→ w ·Φ(x)+b : w ∈ RN ,b ∈ R}

with a feature mapping Φ : X → RN associated to some polynomial kernel K and the opti-
mization problem

min
w,b

1
n

n

∑
i=1

(w ·Φ(xi)+b− yi)
2.

Thereby we do not have to explicitly calculate the inner products w ·Φ(x) in RN , but can use
the kernel function K to implicitly do that.
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Remark 3.35. We clearly always have a positive generalization error for all hypotheses,
when the labels y are not given deterministically through the features x.
A hypothesis h∗ with a minimal generalization error over all h ∈ H is called best-in-class
hypothesis.
Of course, we do not have access to find h∗, or infh∈H R(h) if h∗ does not exist, in general.
However, for algorithms that minimize the empirical error over all hypotheses, like the
linear regression above, we have for the solution hS that R̂(hS)≤ R̂(h∗), so

R(hS)−R(h∗) = R(hS)− R̂(hS)+ R̂(hS)−R(h∗)≤ R(hS)− R̂(hS)+ R̂(h∗)−R(h∗)

≤ 2 sup
h∈H
|R(h)− R̂(h)| ≤ 2

(
2pMp−1R̂S(H)+3Mp

√
log(2/δ )

2m

)
,

if we consider bounded Lp loss functions due to Theorem 3.27.

Note, that the complexity of the hypothesis set H plays quite an interesting role in the
generalization bound above. On the one hand, we get better guarantees for the selected
hypothesis hs to have a generalization error close to the best one R(h∗) over all h ∈ H, when
the hypothesis set H has a small (empirical) Rademacher complexity. On the other hand,
the minimum value R(h∗) itself will tend to go down when we consider larger hypothesis
sets H with higher Rademacher complexity.

It turns out, that in practice algorithms perform better, which do not just minimize the
empirical error over all h ∈H, but have an added regularization term that penalizes complex
hypotheses with respect to the Rademacher complexity.
We will show this approach in one of the most popular algorithms in the Machine Learning
framework, the support vector machine.

3.6 Support Vector Regression

In support vector regression the loss function is generally chosen so, that only points
outside of an ε tube around the predicted function are penalized.
Consider the hypothesis set H of linear functions H = {x→ w ·Φ(x) + b : w ∈ Rn,b ∈ R},
where Φ is the feature mapping corresponding some PDS kernel K. Now support vector
regression does not only focus on minimizing the error on the training sample but has an
regularization term ||w||2 added that tries to reduce the model complexity.
Furthermore, a parameter C is added that determines the trade-off between the minimization
of ||w||2, i.e. the minimization of the model complexity, and the minimization of the training
errors. All in all, the optimization problem for Support Vector Regression (SVR) can be
written as follows:

min
w,b

1
2
||w||2 +C

n

∑
i=1
|yi− (w ·Φ(xi)+b)|ε ,

where | · |ε denotes an ε-insensitive loss function. We will consider the linear ε-insensitive
loss:

∀y,y′ ∈ Y, |y′− y|ε = max(0, |y′− y|− ε).
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Remark 3.36. Other popular loss functions in support vector regression are the quadratic
ε-insensitive loss and the Huber loss, which penalizes larger errors linearly and smaller ones
quadratically.
As one can already see, we are quite free in the choice of loss functions and kernels in this
framework. The main aspect we have to care about is that it leads to convex optimization
problems, which is guaranteed here when we use PDS kernels and convex loss functions
like the ones mentioned.

Using slack variables ξi ≥ 0 and ξ ′i ≥ 0, i ∈ [i,n], the optimization problem can be equiv-
alently written as

min
w,b,ξ ,ξ ′

1
2
||w||2 +C

n

∑
i=1

(ξi +ξ
′
i ),

subject to
w ·Φ(xi)+b− yi ≤ ε +ξi

yi− (w ·Φ(xi)+b)≤ ε +ξ
′
i

ξi ≥ 0,ξ ′i ≥ 0, ∀i ∈ [1,n].

Recall, that for optimization with equality constraints generally the method of Lagrangian
multipliers is being applied to convert the problem into an unconstrained one. However,
here we have inequality constraints.
Therefore we will introduce the Karush-Kuhn-Tucker (KKT) approach, which generalizes
the method of Lagrangian multipliers to inequality constraints.

Insertion: Optimization with inequality constraints

To do that, we first define an associated Lagrange function to the general optimization
problem, similar to the method of Lagrangian multipliers. The Lagrangian can be built for
any constrained optimization problem, but we will then focus on convex problems.

Definition 3.37. The Lagrange function or the Lagrangian associated to the general opti-
mization problem

min
x∈X⊆RN

f (x), f : X → R,

subject to
gi(x)≤ 0 ∀i, gi : X → R, i ∈ {1, ..,n}

is the function L defined over X×Rn
+ by

∀x ∈ X ,∀α ≥ 0, L(x,α) = f (x)+
n

∑
i=1

αigi(x),

where α = (α1, ...,αn)
T . The variables αi are called Lagrange or dual variables.

Note, that the inequality constraints formulation is indeed a generalization, since we can
express an equality constraint by two opposite inequality constraints.
To be able to solve this optimization problem, we will also consider its dual problem.



34 Regression models in the framework of Machine Learning

Definition 3.38. The (Lagrange) dual function associated to the constrained optimization
problem is defined by

∀x ∈ X ,∀α ≥ 0, F(α) = inf
x∈X

L(x,a) = inf
x∈X

( f (x)+
n

∑
i=1

αigi(x))

Definition 3.39. The dual problem associated to the constrained optimization problem is

max
α

F(α),

subject to α ≥ 0.

The solution of the dual problem of a convex optimization problem is equal to the orig-
inal solution, when the constraints are qualified.

Definition 3.40. Assume that int(X) 6= /0. Then, the strong constraint qualification or Slater’s
condition is defined as

∃x ∈ int(X) : g(x)< 0.

Definition 3.41. Assume that int(X) 6= /0. Then, the weak constraint qualification or weak
Slater’s condition is defined as

∃x ∈ int(X) : ∀i ∈ [1,n],(gi(x)< 0)∨ (gi(x) = 0∧gi affine).

Now we first show that a saddle point of the Lagrangian is a solution of the problem
and then give a statement which guarantees the existence of a saddle point (x,α), if x is a
solution of the convex problem and if Slater’s condition holds.

Theorem 3.42. Let P be a constrained optimization problem over X = RN . If (x∗,α∗) is a
saddle point of the associated Lagrangian, that is,

∀x ∈ Rn,∀α ≥ 0, L(x∗,α)≤ L(x∗,α∗)≤ L(x,α∗),

then (x∗,α∗) is a solution of the problem P.

Proof. The first inequality implies

∀α ≥ 0,α ·g(x∗)≤ α
∗ ·g(x∗). (3.11)

This yields g(x∗) ≤ 0, since (3.11) holds for arbitrary big α . On the other hand, (3.11) also
implies α∗ ·g(x∗) = 0, because it holds for arbitrary small α as well.
Therefore, the second inequality in the theorem implies

∀x, f (x∗)≤ f (x)+α
∗ ·g(x),

i.e., for all x satisfying the constraints g(x)≤ 0,

f (x∗)≤ f (x).
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Theorem 3.43. Assume that f and gi, i∈ [1,n], are convex functions and that Slater’s condi-
tion holds. Then, if x is a solution of the constrained optimization problem, then there exists
α ≥ 0, such that (x,α) is a saddle point of the Lagrangian.

If the functions are even convex differentiable, then fulfilling the weak Slater’s condition
is enough for the statement.

Theorem 3.44. Assume that f and gi, i ∈ [1,n], are convex differentiable functions and that
the weak Slater’s condition holds. Then, if x is a solution of the constrained optimization
problem, then there exists α ≥ 0, such that (x,α) is a saddle point of the Lagrangian.

The following last theorem connects the established implications and gives us concrete
conditions that are equivalent to x being a solution of the problem.

Theorem 3.45 (Karush-Kuhn-Tucker’s theorem). Assume that f ,gi : X → R ∀i are convex
and differentiable and that the constraints are qualified. Then x is a solution of the con-
strained program if and only if there exists an α ≥ 0, such that

∇xL(x,α) = ∇x f (x)+α ·∇xg(x) = 0

∇α L(x,α) = g(x)≤ 0

α ·g(x) =
n

∑
i=1

α ig(xi) = 0.

These conditions are known are called the KKT conditions.
Note, that since g(x)≤ 0, the last condition can be substituted by

α igi(x) = 0 ∀i ∈ 1, ..,n.

These equalities are called complementarity conditions.

Proof. ”⇒ ”: Let x be a solution of the constrained program. Since the constraints are qual-
ified, there exists α such that (x,α) is a saddle point of the Lagrangian. That a saddle point
fulfills the three conditions can be seen in the proof of Theorem 3.42 (the first one follows
directly from the definition of a saddle point).

”⇐ ”: Assume that the three conditions are fulfilled. Then we have for any x with g(x)≤ 0,
that

f (x)− f (x)≥ ∇x f (x) · (x− x)≥−
n

∑
i=1

α i∇xgi(x) · (x− x),

because f is convex and by the first condition. Since also the gi are convex, this can be
further approximated by

f (x)− f (x)≥−
n

∑
i=1

α i|gi(x)−gi(x)| ≥ −
n

∑
i=1

α igi(x)≥ 0,

due to the third and second condition. That is, f (x) is the minimum of f over the set of
points that satisfy the constraints, i.e. x is a solution of the constrained program.
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Let us go back to our optimization problem in support vector regression,

min
w,b,ξ ,ξ ′

1
2
||w||2 +C

n

∑
i=1

(ξi +ξ
′
i ),

subject to
w ·Φ(xi)+b− yi ≤ ε +ξi

yi− (w ·Φ(xi)+b)≤ ε +ξ
′
i

ξi ≥ 0,ξ ′i ≥ 0, ∀i ∈ [1,n].

We see that we indeed have a convex and differentiable problem, because the norm, and
thus also the objective function, is convex and differentiable and the constraints are affine.
Since the constraints are affine, they are also qualified. Therefore we can apply Karush-
Kuhn-Tucker’s theorem and the KKT conditions hold at the optimum.

To use that, we formulate the associated Lagrange function

L(w,b,ξ ,ξ ′) =
1
2
||w||2 +C

n

∑
i=1

(ξi +ξ
′
i )+

n

∑
i=1

αi[w ·Φ(xi)+b− yi− ε−ξi]

+
n

∑
i=1

α
′
i [yi− (w ·Φ(xi)+b)− ε−ξ

′
i ]−

n

∑
i=1

βiξi−
n

∑
i=1

β
′
i ξ
′
i ,

where αi,α
′
i ,βi,β

′
i are the Lagrangian variables.

Now the first KKT condition is obtained by setting the gradient of the Lagrange function
with respect to the variables w,b,ξi,ξ

′
i to zero.

∇wL = w+
n

∑
i=1

αiΦ(xi)−α
′
i Φ(xi) = 0⇒ w =

n

∑
i=1

(α ′i −αi)Φ(xi) (3.12)

∇bL =
n

∑
i=1

(αi−α
′
i ) = 0 (3.13)

∇ξi
L =C−αi−βi = 0⇒ αi +βi =C (3.14)

∇
ξ ′i

L =C−α
′
i −β

′
i = 0⇒ α

′
i +β

′
i =C.

Plugging into the complementarity conditions yields

∀i, αi[(w ·Φ(xi)+b)− yi− ε−ξi] = 0⇒ αi = 0∨ (w ·Φ(xi)+b)− yi = ε +ξi (3.15)

∀i, α
′
i [yi− (w ·Φ(xi)+b)− ε−ξ

′
i ] = 0⇒ α

′
i = 0∨ yi− (w ·Φ(xi)+b) = ε +ξ

′
i

∀i, βiξi = 0⇒ βi = 0∨ξi = 0 (3.16)

∀i, β
′
i ξ
′
i = 0⇒ β

′
i = 0∨ξ

′
i = 0.

By (3.12), for the solution the vector w is a linear combination of Φ(x1), ...,Φ(xm), i.e. of the
training set vectors mapped to Rp.



3.6 Support Vector Regression 37

A vector Φ(xi) appears in that expansion iff αi 6= α ′i . Those vectors are called support vec-
tors.
For that αi or α ′i has to be positive. Thereby αi > 0 implies α ′i = 0 and reversed, as we will
see shortly, because yi cannot lie both over and under the predicted function. By (3.15), if
αi > 0, we have (w ·Φ(xi)+b)−yi = ε +ξi (similar for α ′i ). So support vectors are the vectors,
s.t. yi has at least distance ε to the predicted function.
If the distance is bigger than ε , (3.16) implies βi = 0 (or β ′i = 0), thus αi =C (or α ′i =C) by
(3.14). Finally, if no yi has a distance of exactly ε to the predicted function, by (3.13) we
get that the number of yi over the ε-tube matches the number under the tube in the solution.

To derive the dual form of the problem, we reformulate the Lagrangian using (3.12), (3.13)
and (3.14).

L=
1
2
||

n

∑
i=1

(α ′i−αi)Φ(xi)||2+C
n

∑
i=1

(ξi+ξ
′
i )+

n

∑
i=1

αi

[(
n

∑
i=1

(α ′i −αi)Φ(xi)

)
·Φ(xi)+b− yi− ε−ξi

]

+
n

∑
i=1

α
′
i

[
yi−

((
n

∑
i=1

(α ′i −αi)Φ(xi)

)
·Φ(xi)+b

)
− ε−ξ

′
i

]
−

n

∑
i=1

βiξi−
n

∑
i=1

β
′
i ξ
′
i .

=
1
2

n

∑
i, j=1

(α ′i −αi)(α
′
j−α j)Φ(xi)Φ(x j)+

n

∑
i, j=1

α j(α
′
i −αi)Φ(xi)Φ(x j)+

n

∑
i=1

αib−
n

∑
i=1

αiyi−
n

∑
i=1

αiε

+
n

∑
i=1

α
′
i yi−

n

∑
i, j=1

α
′
j(α
′
i −αi)Φ(xi)Φ(x j)−

n

∑
i=1

α
′
i b−

n

∑
i=1

α
′
i ε

=−1
2

n

∑
i, j=1

(α ′i −αi)(α
′
j−α j)Φ(xi)Φ(x j)+b

n

∑
i=1

(αi−α
′
i )︸ ︷︷ ︸

=0

+
n

∑
i=1

(α ′i −αi)yi−
n

∑
i=1

(αi +α
′
i )ε.

This leads to the following equivalent dual problem in terms of the kernel matrix K:

max
α,α ′
−ε(α ′+α)T1+(α ′−α)T y− 1

2
(α ′−α)TK(α ′−α) (3.17)

subject to
(0≤ α ≤C)∧ (0≤ α

′ ≤C)∧ ((α ′−α)T1= 0),

since αi ≥ 0,βi ≥ 0 is equivalent to 0≤ α ≤C due to (3.14).

This problem is called a convex quadratic program (QP) and can be solved by convex opti-
mization techniques, for example using an interior point method.

Since the constraints are qualified, the solution of the dual problem is equal to the solu-
tion of the original problem. So, after determining α , α ′, we can directly formulate the
hypothesis returned by SVR, using (3.12), as

∀x ∈ X , h(x) = w ·Φ(x)+b =
n

∑
i=1

(α ′i −αi)K(xi,x)+b, (3.18)
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where b can be determined using a point x j with 0 < α j < C. Then y j lies exactly ε under
the predicted function, so

b =−
n

∑
i=1

(α ′i −αi)K(xi,x j)+ y j + ε,

and if 0 < α ′j <C, we get similarly

b =−
n

∑
i=1

(α ′i −αi)K(xi,x j)+ y j− ε.

Example 3.46. Let us consider Example 1.2 again and suppose we have drawn the claims
expenditures y j for the year x j, (1,y1),(2,y2), ..,(10,y10), whereby we shift the years in the
data frame to start from 1 again.
We take a linear kernel, i.e. the identity as feature mapping. Furthermore, we fix ε = 10
[million euros] and C = 100 to demonstrate the method. (For bigger data sets than in this
example, the choice of kernels and parameters is usually decided based on error reduction,
e.g. via cross-validation, see Remark 3.47.)
Then using a QP solver for (3.17) gives the coefficients α̂i = (α ′i −αi) as in the following
table.

α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8 α̂9 ˆα10
100 -100 -100 0 100 100 -100 0 -9,3 9,3

Plugging these coefficients into (3.18) yields the hypothesis

h(x) = 188,3+9,3x,

which gives a predicted value for the claims expenditures in the next year of 290.6 million
euros. So it is the first model that does not predict a new peak within the data frame for the
next year.
In SVR with a linear kernel the slope will in general tend to be a bit smaller compared to
ordinary linear regression due to the regularization term, as it is the case in this example.

Note, that in Figure 3.1 we indeed have α̂ j =C for points under the tube, α̂ j =−C for points
over the tube, 0 < |α̂ j|<C for points on the margin and α̂ j = 0 for points within the tube.
So the support vectors in this example are all but x4 and x8.

Here we do not have a probabilistic model that includes properties like the distribution of
the response. On the other hand, those properties were based on assumptions on the type of
underlying distribution that were rather an educated guess than a mathematically profound
one. So this SVR model can be seen as a purer mathematical model.

Another advantage of support vector regression is that various nonlinear extensions can
be implemented very straightforwardly by using kernels, which leads to the same optimiza-
tion problem, just with a different kernel matrix.
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Figure 3.1: SVR with linear kernel, ε = 10, C = 100

A popular kernel in SVR is the radial basis function (RBF) kernel

K(x,x′) = exp(−γ ||x− x′||2), γ > 0.

The choice of appropriate parameters is crucial for the model accuracy. However, this is
not straightforward and therefore a disadvantage of SVR. One might even argue that this
framework just shifts the need of model assumptions to the estimation of parameters.

Remark 3.47. A good approach to choosing the cost parameter C, or the free parameter γ

when we use a RBF kernel, is the so-called k-fold cross validation. Thereby the data set is
randomly split into k subsets. Then the algorithm is iteratively applied to all but one subset.
On that subset the mean error based on the resulting model is measured. After iterating
over all subsets and a grid of parameter values, the parameter with the lowest mean error is
chosen.

Finally, we are also able to show generalization bounds for the SVR algorithm, using
the theory we have already developed. Thereby we denote by D̂ the empirical distribution
defined by the training sample of size m.

Theorem 3.48. Let K : X ×X → R be a PDS kernel, let Φ : X → H be a feature mapping
associated to K and let H = {x→ w ·Φ(x) : ||w||H ≤ Λ}. Furthermore, assume that there



40 Regression models in the framework of Machine Learning

exists r > 0 such that K(x,x)≤ r2 and |y| ≤ Λr ∀y ∈ Y . Fix ε > 0.
Then, for any δ > 0, with probability at least 1−δ , each of the following inequalities holds
for all h ∈ H:

E(x,y)∈D[|h(x)− y|ε ]≤ E(x,y)∈D̂[|h(x)− y|ε ]+
2rΛ√

m

(
1+

√
log(1/δ )

2

)
,

E(x,y)∈D[|h(x)− y|ε ]≤ E(x,y)∈D̂[|h(x)− y|ε ]+
2rΛ√

m

(√
Tr[K]

mr2 +3

√
log(2/δ )

2

)
.

Proof. Define Hε = {(x,y)→ |h(x)− y|ε : h ∈ H} and H ′ = {(x,y)→ h(x)− y : h ∈ H}.
Note that the function Φε : x→ |x|ε is 1-Lipschitz. Therefore we have R̂S(Hε) ≤ R̂S(H ′)
by Lemma 3.25. Furthermore, it holds that R̂S(H ′) = R̂S(H), as shown in the proof of
Theorem 3.26, so we also have

R̂S(Hε)≤ R̂S(H).

Moreover, ∀(x,y) ∈ X×Y,∀h ∈ H,

|h(x)− y| ≤ |h(x)|+ |y|= |w ·Φ(x)|+Λr ≤ Λ||Φ(x)||+Λr ≤ 2Λr,

because ||Φ(x)||=
√

K(x,x)≤ r as a feature mapping associated to K.
Next we have, by the definition of the empirical Rademacher complexity, that

R̂S(H) =
1
m
Eσ

[
sup
||w||≤Λ

〈w,
m

∑
i=1

σiΦ(xi)〉

]
≤ Λ

m
Eσ

[
||

m

∑
i=1

σiΦ(xi)||H

]

due to the Cauchy-Schwarz inequality. Now Jensen’s inequality yields the bound

R̂S(H)≤ Λ

m

[
Eσ

[
||

m

∑
i=1

σiΦ(xi)||2H

]]1/2

=
Λ

m

[
Eσ

[
m

∑
i=1
‖|Φ(xi)||2H

]]1/2

since the Rademacher variables are independent, i.e. Eσ [σiσ j] = Eσ [σi]Eσ [σ j] = 0 for i 6= j.
This yields

R̂S(H)≤ Λ

m

[
Eσ

[
m

∑
i=1

K(xi,xi)

]]1/2

≤ Λ

m

[
Eσ

[
mr2

]]1/2
=

√
r2Λ2

m
.

Thus, we also have Rm(H)≤
√

r2Λ2
m .

Finally, Theorem 3.27 gives, for any δ > 0, with probability at least 1−δ , that

E(x,y)∈D[|h(x)− y|ε ]≤ E(x,y)∈D̂[|h(x)− y|ε ]+
2rΛ√

m

(
1+

√
log(1/δ )

2

)
.

The second statement follows similarly with ∑
m
i=1 K(xi,xi) =: Tr[K].
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Remark 3.49. In addition to linear regression and its kernel-based non-linear extension,
as presented in this section, a popular approach to regression algorithms in the Machine
Learning framework is the so-called decision tree learning.
Thereby a simple approach is to minimize the squared errors, that we can get by splitting
the data into two parts through a value of a single feature and taking the average label in
each part as estimator. After iterating that approach in each part up to a certain depth, one
can visualize this model as a decision tree.

Remark 3.50. The machine learning framework can be also be applied to classification
problems, i.e. to problems where Y is a finite set. Thereby ML methods have also already
been successfully employed in many applications, for example in spam detection in emails.

3.7 Principal Component Analysis

We have already mentioned that in Big Data problems the data is usually unstructured
and we do not have much information about it. Therefore it is popular to, before applying
regression algorithms, first try to structure the data by using Data Mining techniques, which
are called unsupervised Machine Learning methods in the context of ML.

The method we will consider is the Principal Component Analysis (PCA). This approach
can give us essential information about the data and also help us to reduce the dimensional-
ity of the problem. Thereby we start with a data matrix X with n samples in the rows and p
respective properties in the columns.

This method performs an eigendecomposition of the sample covariance matrix, which al-
ways exists since the sample covariance matrix is real symmetric and therefore diagonaliz-
able. Note, that after centering the properties in our data matrix X , the sample covariance
matrix is up to a constant factor 1/n equal to XT X .

Remark 3.51. In the field of statistics the constant factor is usually set to 1/(n−1) because
it leads to an unbiased estimator for the variance. This is often called Bessel’s correction in
the literature.

Thereby centering does not change the sample covariance matrix since the variance
measures the deviation from the mean.
Therefore, that eigendecomposition can be deduced from the Singular Value Decomposition
(SVD) of the matrix X , which gives the eigenvalues and corresponding eigenvectors of XT X .

To focus on the correlations only and to not have to worry about different units in the
property set, one can also standardize the variance of the properties in the data matrix first.
This gives a sample correlation matrix, on which the PCA can be performed similarly.

Recall that the SVD of a matrix X is given by

X =UΣV T ,
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where U and V are rotation matrices, i.e. have orthonormal columns, and Σ is diagonal with
the singular values λ1 ≥ λ2 ≥ ...≥ 0 in decreasing order. Since

1
n

XT X =
1
n
(UΣV T )T (UΣV T ) =

1
n

V ΣUTUΣV T =V
Σ2

n
V T

is an eigendecomposition of the sample covariance matrix, the columns of V are eigenvec-
tors and the singular values are the square roots of the (non-zero) eigenvalues of XT X . We
will call the orthonormal eigenvectors of the sample covariance matrix, i.e. the columns of
V , that are corresponding to non-zero eigenvalues, principal components in the following.
The coefficients of the projections of the data onto them, which are given by

XV =UΣV TV =UΣ,

we will call principal component scores (PC scores).

It can be shown that the first principal component maximizes the variance of the PC scores
amongst all linear combinations of properties. Equivalently, it minimizes the distances be-
tween the original data points and the projected ones. The second principal component does
the same amongst all orthogonal linear combinations to the first PC and so on. Furthermore,
the data points are uncorrelated in the new orthogonal system built by the principal compo-
nents.

Moreover, since the singular values λ1 ≥ λ2 ≥ ... ≥ 0 are in decreasing order, the matrix
X can be approximated by considering the SVD only up to a certain singular value λk. It
can be shown that this gives the best rank k approximation to the n× p matrix X in the
Frobenius norm, i.e. it minimizes

n

∑
i=1

p

∑
i=1

(X̂i j−Xi j)
2 : rank(X̂) = k.

This result is known as the Eckart–Young–Mirsky theorem.

SVD algorithms

Now we will display how SVD routines can be implemented with consideration to op-
timized performance.
Recall that the singular values of a real matrix X = UΣV T are the square roots of the non-
zero eigenvalues of XT X , and the corresponding columns of V are orthonormal eigenvectors.
Therefore SVD algorithms seek eigenvalues and eigenvectors of XT X . This is done without
having to compute the full matrix XT X .

More precisely, Jacobi rotations are performed to iteratively diagonalize the matrix. Fur-
thermore, a QR-decomposition of the matrix X with a suited column pivoting method is
performed as preconditioning. Thereby X denotes the n× p model matrix with p features in
the columns and n samples in the rows again, n ≥ p, so that we can apply a QR-procedure
to X .
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Remark 3.52. We will not consider the case p < n here, since it is usually not meaningful
to analyze a data matrix with very few samples. Theoretically we could apply the algorithm
to XT then though.

A Jacobi rotation matrix V̂ generates zeros in two opposite off-diagonal entries Hst and
Hts of a real symmetric matrix H, i.e.(

V̂ss V̂st

−V̂st V̂ss

)T (
Hss Hst

Hst Htt

)(
V̂ss V̂st

−V̂st V̂ss

)
=

(
H ′ss 0
0 H ′tt

)

with V̂ss = V̂tt = cos(φ) and V̂st =−V̂ts = sin(φ).
Note, that therefore we have to have 0 = H ′st = Hst(V̂ 2

ss−V̂ 2
st)+(Hss−Htt)V̂ssV̂st .

For the non-trivial case Hst 6= 0 we define τ = (Hss−Htt)/(2Hst), which yields with the con-
dition above that (for V̂ss 6= 0) q = V̂st/V̂ss = tan(φ) has to solve q2 +2τq−1 = 0.
This gives the solutions q =−τ±

√
1+ τ2 and we get V̂ss = 1/

√
1+ τ2, V̂st = t V̂ss.

Remark 3.53. According to [20], it is important to take the smaller of the two solutions for
the performance of the algorithm because it guarantees |φ | ≤ π/4 and less changes in the
remaining entries of the s-th and t−th row and column with respect to the Frobenius norm.

Note, that we cannot guarantee that in a Jacobi rotation already existing zeros in the s-th
or t-th row or column are getting destroyed, but we do have that the summarized squared
absolute values of all off-diagonal entries decrease with every non-trivial Jacobi rotation,
since the Frobenius norm of H does not change by applying an orthogonal transformation.

A reasonable pivot strategy is to always create zeros in the off-diagonal entries with the
largest absolute values in every iteration. However, to do that we always have to track all
off-diagonal values in the algorithm, but in the SVD algorithm we will not even explicitly
build the whole symmetric matrix XT X (or later RT R).
Instead, we can represent a sequence of rotations on H(0) = XT X by applying it only to X
itself, i.e.

X (k+1) = X (k)V (k),

since we then have

H(k+1) =V (k)T H(k)V (k) =V (k)T X (k)T X (k)V (k) = X (k+1)T X (k+1).

To calculate the four non-trivial entries V (k)
ss ,V (k)

st ,V (k)
ts and V (k)

tt of the rotation V (k) we just
need to build the 2×2 Gram matrix of the s-th and t-th column of X (k).
Since we don’t compute the full matrix XT X , we will use a fixed row-cycling pivot strategy.
It can be shown the sequence of iterates (H(k)), which we represent by (X (k)), converges to
a diagonal matrix Λ under suitable pivot strategies, including the ones mentioned above.
The accumulated product of the Jacobi rotations converges to a orthogonal matrix V of
eigenvectors of H. Therefore we have XT XV = V Λ. Furthermore, it can be shown that the
sequence (X (k)) converges to UΣ, s.t. the SVD of X is UΣV T .
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The QR-preconditioning of the (n× p)-matrix X turns out to be useful in several aspects.
Firstly, it serves for dimensionality reduction because the resulting reduced R matrix is of
dimension p× p and we have XT X = (QR)T (QR) = RT R. Therefore we can also apply the
rotations on R, i.e.

R(k+1) = R(k)V (k)

with V (k) calculated by a 2×2 Gram matrix of R(k).

Remark 3.54. A comparison is given in [7]. A Householder QR-algorithm requires 2np2−
2p3/3 flops to calculate R. One full sweep, i.e. iterating once over all off-diagonal entries, of
a Jacobi SVD algorithm with fast rotations requires 3np2 flops if the product of the rotations
is not computed. Therefore, if only the singular values are needed, the QR preconditioning
already pays off after one full sweep if n > 7p/3 and in two sweeps if n > 4p/3.

To take further advantages of the preconditioning we will use a QR-procedure with
column pivoting to get

XP = Q

(
R
0

)
such that |Rii| ≥

√√√√ j

∑
k=i

R2
k j,1≤ i≤ j ≤ p.

This allows us to continue the algorithm with a smaller (r× p) matrix if |Rrr| is sufficiently
small for some r < p, which is called a rank-revealing QR-decomposition.
However, one has to be careful of the errors we produce by doing that speed-up step if high
accuracy is needed.

Finally, it turns out that performing a second QR-decomposition RT = Q1R1 and then ap-
plying the algorithm to RT

1 instead of R1 leads to further improvements, see [7] for details.
Additionally, slight changes in the pivot strategy of Jacobi rotations can lead to faster con-
vergence, as demonstrated in [8].

This yields the following pseudo-code for the computation of the singular values. In that
algorithm, an initial row permutation on X and a pivoting in the second QR-factorization
are added, which can at times be beneficial, see [7].
Thereby we denote matrices that do not have to explicitly be computed with 〈·〉. Also, we
use the notation M∞ for the output of the Jacobi procedure after the rotations to the input
matrix M and the notation M∞(:, i) for its i-th column. Moreover, || · || denotes the vector
Euclidean norm.

Algorithm 2 SVD: Computation of Σ

(P0 X)P = 〈Q〉

(
R
0

)
;r = rank(R);

R(1 : r,1 : p)T P1 = 〈Q1〉R1; M = RT
1 ;

M∞ = M〈VM〉;
σi = ||M∞(:, i)||, i = 1, ..,r; diag(Σ) = (σ1, ..,σr,0, ..0);
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If we also need the right singular vectors, i.e. the principal components, of X , we can ele-
gantly avoid calculating the accumulated product of the rotations by inputing the transposed
matrix into the Jacobi procedure as well. In the corresponding algorithm, we pass on the
second QR-decomposition for better running time here, but if high accuracy is required
implementing it is still recommendable in many cases.

Algorithm 3 SVD: Computation of Σ and V

(P0 X)P = 〈Q〉

(
R
0

)
;r = rank(R);

M = R(1 : r,1 : p)T ;
M∞ = M〈VM〉;
σi = ||M∞(:, i)||, i = 1, ..,r; diag(Σ) = (σ1, ..,σr,0, ..0);
UM(:, i) = 1

σi
M∞(:, i), i = 1, ..,r; V = PUM;

Remark 3.55. Note, that we indeed get the right singular vectors of X by the matrix UM
in the computed SVD, since we inputed the transposed matrix M = RT , which yields a shift
between the meanings of the matrices UM and VM in the SVD.

For the error analysis of the presented algorithms we drop the permutation matrices,
that is we assume that the matrix X is replaced with the permuted matrix (P0X)P.
Our goal is to derive a backward stability result for the presented algorithms, i.e. for the
calculation of the singular values or the singular values and the right singular vectors.
To do that, we first give a result which is based on the individual backward errors of the QR-
decomposition and the Jacobi rotations and which states that there exists a nearby matrix to
X , which equals an "almost SVD" given by the computed matrices Σ and UM.

Proposition 3.56. Let X be a real n× p matrix and assume that the SVD of X is computed

by QR-preconditioning X = Q

(
R
0

)
and then applying the Jacobi SVD algorithm to M = RT

in the IEEE standard, which guarantees a rounding error of ε < 10−7 for single variables
and ε < 10−15 for double variables.
Let M ≈ ŨMΣ̃〈Ṽ T

M〉 be the computed SVD. Then there exist a perturbation ∆X and orthogonal
matrices Q̂,V̂M such that

X +∆X = Q̂

(
V̂M 0
0 I

)(
Σ̃

0

)
ŨT

M, where (3.19)

||∆X(:, i)|| ≤ η̃ ||X(:, i)||, i = 1, .., p, η̃ = εqr + εJ + εqrεJ (3.20)

with parameters εqr ≤O(np)ε for Householder QR factorization and εJ ≤ (1+6ε)s(2p−3)− 1
for the row or column cycling Jacobi algorithm that stops during the s−th sweep.

Proof. The following proof is given in [7, Proposition 6.1].
Let Q̃ and R̃ be the computed matrices in the numerical QR-decomposition with Householder
transformations. Then there exist an orthogonal matrix Q̂ and a backward perturbation δX
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such that X + δX = Q̂

(
R̃
0

)
, where we have ||δX(:, i)|| ≤ εqr||X(:, i)|| with εqr ≤ O(np)ε for

all i, see [7, Proposition 2.2].
Let the cycling Jacobi SVD be applied to M = R̃T . According to [7, Proposition 2.3], this
further gives M+F = ŨMΣ̃V̂ T

M , where ||F(i, :)|| ≤ εJ ||M(i, :)|| with εJ ≤ (1+6ε)s(2p−3)−1, so

X +δX + Q̂

(
FT

0

)
︸ ︷︷ ︸

=∆X

= Q̂

(
V̂M 0
0 I

)(
Σ̃

0

)
ŨT

M.

Moreover, in that equation the backward perturbation ∆X has column-wise bound

||∆X(:, i)|| ≤ εqr||X(:, i)||+ εJ ||R̃(:, i)|| ≤ εqr||X(:, i)||+ εJ(1+ εqr)||X(:, i)||,

which yields the statement.

However, the right hand side in relation (3.19) is not a SVD yet, since the matrix ŨM is
in general not exactly orthogonal. To actually get a SVD of a matrix that is close to X , we
need to replace ŨM with a nearby orthogonal matrix Û .

Proposition 3.57. In addition to the assumptions in Proposition 3.56, let εU = ||ŨT
MŨM −

I||F < 1/(2
√

2). Then there exists a backward perturbation E and an orthogonal matrix Û ,
such that ||ŨM−Û ||F ≤

√
2εu and that the SVD of X +E is

X +E = Q̂

(
V̂M 0
0 I

)(
Σ̃

0

)
ÛT , where for all i

||E (:, i)|| ≤ η̂ ||X(:, i)||, η̂ = η̃ +
√

2pεU (1+ η̃)+O(ε2
U ).

Proof. Let Pd be the permutation matrix, so that the columns of XPd are ordered in decreas-
ing Euclidean norm. Let PT

d ŨM = (I+GT
0 )ÛM be the RQ decomposition of PT

d ŨM, where G0
is a lower triangular matrix and ÛM orthogonal. Then we have

(I +G0)(I +G0)
T = ÛMŨT

MŨMÛT
M = I +ÛM(ŨT

MŨM− I)ÛT
M︸ ︷︷ ︸

:=A

.

Since ||A||F = ||ŨT
MŨM− I||F = εU < 1/(2

√
2) holds, it can be shown that ||G0||F ≤

√
2εU , see

[9]. In particular, ||G0||F < 1, so I+G0 is invertible, whereby we denote (I+G0)
−1 =: I+G.

Clearly, G is lower triangular, as (I+G) is the inverse of a lower triangular matrix. Moreover,
since G =−G0 +G2

0 (I +G0)
−1 [see the proof of Proposition 3.58], we have that

||G||1 ≤ ||G0||1 + ||G0||21/(1−||G0||1).

Furthermore, with (3.19) and the orthogonal matrix PdÛM = Pd(I+G)PT
d ŨM we get the SVD

(X +∆X)(I +PdGPT
d ) = Q̂

(
V̂M 0
0 I

)(
Σ̃

0

)
(PdÛM)T , (3.21)
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Now, one can further verify that

XPdG(:, i) =
p

∑
k=i

X(:,π(k)),

where π denotes the permutation given by Pd . Since the columns are ordered to have de-
creasing Euclidean norms by that permutation, this yields

||XPdG(:, i)|| ≤
n

∑
k=i
|gki| ||X(:,π(k))|| ≤ ||G||1 ||X(:,π, i)||.

Furthermore, the permutation matrix PT
d = P−1

d rearranges the columns back to the original
order, so we have

||(XPdGPT
d )(:, i)||= ||(XPdG)(:,π−1(i))|| ≤ ||G||1 ||X(:, i)||.

Therefore we also get with (3.20) that

||∆XPdGPT
d (:, i)|| ≤ η̃ ||G||1||X(:, i)||.

To conclude, note that the orthogonal matrix Û := PdÛM satisfies ||Û − ŨM||F = ||G0||F ≤√
2εU , since ŨM = PdÛM +PdGT

0 ÛM and since the Frobenius norm is invariant under orthog-
onal transformations, and that (3.21) defines a backward perturbation matrix E as in the
statement because ||G0||1 ≤

√
p||G0||F ≤

√
p
√

2εU , so

||G||1 ≤ ||G0||1 + ||G0||21/(1−||G0||1)≤
√

2pεU +O(ε2
U ) (for εU → 0).

This proposition gives a desired backward stability result for variants of the presented
algorithms, in which we don’t exploit the rank revealing QR-decomposition to continue
with a smaller matrix and only use one QR-preconditioning. For stability considerations
regarding variants with two preconditionings, see [7, section 6.2].

In [7], also the forward errors are considered. For the singular values, the following es-
timate holds.

Proposition 3.58. Let X = UΣV T be the SVD of the n× p matrix X with full column rank,

where Σ=

(
Σ

0

)
with Σ= diag(σ1, ..,σp). Furthermore, let σ̃1 ≥ ..≥ σ̃p be the singular values

of the perturbed matrix X + δX = (I +Γ)X , where Γ = δXX† with the pseudo-inverse X† =

U

(
Σ
−1

0

)
V T . Finally, let Sym(Γ) := 1

2 (Γ+ΓT ) and assume that ||Γ||2 < 1, where || · ||2 = σ1(·)

denotes the spectral norm.
Then it holds that

max
j=1,..,p

|σ̃ j−σ j|√
σ̃ jσ j

≤ ||Sym(Γ)||2 +
1
2
||Γ||22

1−||Γ||2
≤ ||Γ||2 +O(||Γ||22).



48 Regression models in the framework of Machine Learning

Proof. Since ||Γ||2 < 1, I +Γ is invertible. Therefore, according to [7], perturbation theory
can be used to get

max
j=1,..,p

|σ̃ j−σ j|√
σ̃ jσ j

≤ 1
2
||(I +Γ)−1− (I +Γ)T ||2 =

1
2
||−2Sym(Γ)+Γ

2(I +Γ)−1||2

by the self-referential form (I+Γ)−1 = (I−Γ)+Γ2(I+Γ)−1, which holds due to the conver-
gent power series (I +Γ)−1 = I−Γ+Γ2−Γ3 + ...
This yields the statement by applying ||(I +Γ)−1||2 ≤ (1−||Γ||2)−1.

For the forward errors of the right singular vectors, i.e. the principal components, recall
Proposition 3.57, where we had the SVD

X +E = Q̂

(
V̂M 0
0 I

)(
Σ̃

0

)
ÛT ≡ ÛX+E

(
Σ̃

0

)
V̂ T

X+E . (3.22)

Proposition 3.59. Let X =UΣV T be the SVD of the n× p matrix X and let (3.22) be the SVD
of the perturbed matrix X +E with ||E (:, i)|| ≤ η̂ ||X(:, i)|| as in Proposition 3.57.
Furthermore, let Φ = E X†,ζ = ||Φ+ΦT +ΦΦT ||2, and ζ ≤ 2||Sym(Φ)||2 + ||Φ||22. If we have

ζ< min
{

2,min j 6=i
|σ j−σi|

σi

}
:= ρi, then it holds that

sin(∠(V (:, i),V̂X+E (:, i)))≤
√

2
{

ξ

ρi−ζ
+ ||Φ||2

}
,

where ξ ≤ 2||Sym(Φ)||2 +O(||Φ||22) and ||Φ||2 ≤
√

p η̂ ||X† diag( 1
||X†(:,i)|| )i=1,..,p ||2.

Proof. See [7, Proposition 6.4], where also a suited reference for the proof is given.

Using this proposition in combination with the backward result we can bound the errors
of the computed right singular vectors, since for the computed numerically orthogonal ma-
trix Ṽ the additional angles ∠(Ṽ (:, i),V̂X+E (:, i))=∠(ŨM(:, i),Û(:, i)) with ||ŨM−Û ||F ≤

√
2εU ,

according to [7], are small and have sharper bounds.

Remark 3.60. Other popular data mining or unsupervised machine learning methods are
often based on cluster analysis. These methods try so group the data set into clusters that
contain similar elements.
For example in k-means clustering, an optimization problem is solved to get an optimal
classifier from the data set to a fixed number of k clusters, so that the sum of the squared
Euclidean distances of all elements in the data set to the mean of their respective cluster is
minimized.



Chapter 4

Further tools: Stochastical
simulation methods

The goal of this chapter is to introduce stochastical simulation methods to estimate
expectations and establish the theoretical foundations for them, which will help us to tweak
our regression models.
In the last chapter we have already shown generalization results that we can get out of a
finite sample. Let us recall Example 3.11, where we also considered the simplified case that
the label set consists of only two points {0,1} (called classification problem).

Example 4.1. In the setting of Example 3.11, consider a biased coin toss (1 := heads,0 :=
tails), where the probability of heads is p, consider the hypothesis h≡ 0 that always predicts
tails and the loss function L(y,y′) = |y− y′|.
The generalization error in this case is R(h) = p. Let p̂ be the empirical probability of heads
based on some sample of size n, thus R̂(h) = p̂.
Hoeffding’s inequality gives

δ =: Pr[|p− p̂| ≥ ε]≤ 2e−2ε2n.

Similarly to the end of the proof of Theorem 3.12, this yields, that for the hypothesis h≡ 0
and for any δ > 0, it holds with probability at least 1−δ that

|R(h)− R̂(h)|= |p− p̂| ≤
√

log(2/δ )

2n
. (4.1)

For example, let δ = 0.02 and n = 500. Then, with probability at least 98%,

|p− p̂| ≤
√

log(100)
1000

≈ 0,068.

So we can already make a good assumption on the expectation of the biased coin toss based
on 500 realizations. On the other hand, we can use (4.1) also to estimate the probability of
the average over 500 realizations being in a specific interval around a given p.

49
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In the following we will establish a more general foundation for simulation methods.
A more popular approach to estimate the probability of the empirical outcome being in an
interval in Example 4.1 is by using the normal approximation, which itself is justified by
the Berry-Esseen Theorem. This theorem will be shown in the following. We will see, that
the convergence rate of 1√

n in (4.1) matches the one in the Berry-Esseen Theorem.
This theorem will also give us insights about the distribution of the errors in a finite sample.

These results allow us to justify estimating expectations by simulating a finite sample from
a distribution. The methods to do that are usually called Monte-Carlo methods. To gain in-
formation about distributions, for example about the empirical distribution function of some
data, it is often numerically convenient to be able to simulate realizations of that distribution
and estimate expectations from that. This can allow us to construct a more accurate model.

4.1 Foundation of Monte-Carlo methods

In Monte-Carlo methods we produce realizations y1, ...,yn of a random variable Y by
expressing it as a function Y = f (X), where we are able to generate realizations x1, ...,xn of
X . For the analysis of the realizations we consider corresponding sequences Y1, ..,Yn and
X1, ..,Xn of i.i.d. random variables with Y1 ∼ Y , X1 ∼ X .

Remark 4.2. In this chapter we use the notation X and Y for general random variables and
the relation Y = f (X) for simulation methods here should not be confused with the spaces X
and Y in the regression problem itself.

The principle of Monte-Carlo methods lies in the strong law of large numbers.
If f satisfies E(| f (X)|)< ∞, the strong law of large numbers gives

lim
n→∞

1
n

n

∑
k=1

f (Xk) = E( f (X)) a.s.

So asymptotically the average 1
n ( f (x1)+ ..+ f (xn)) =

1
n (y1+ ..+yn) over a big sample almost

surely matches the expected value E(Y ).

Convergence rate of Monte-Carlo methods

While the law of large numbers is an important result, it does not include information
about the distribution of the errors

εn =
1
n
(Y1 + ...+Yn)−E(Y )

that we are making by computing an expectation based on a finite sample.
The central limit theorem gives first insights to that. It states that if (Yi, i≥ 1) is a sequence
of i.i.d. random variables such that E(Y 2

1 )< ∞ and σ2 is the variance of Y1, then(√
n

σ
εn

)
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converges in distribution to a standard Gaussian random variable N(0,1), i.e.

∀t ∈ R : lim
n→∞

Pr[
√

n
σ

εn ≤ t] =
∫ t

−∞

1√
2π

e−x2/2dx.

Proposition 4.3. From the central limit theorem it follows that for all c1 < c2,

lim
n→∞

P
(

σ√
n

c1 ≤ εn ≤
σ√

n
c2

)
= lim

n→∞
P
(

c1 ≤
√

n
σ

εn ≤ c2

)
=

1√
2π

∫ c2

c1
e−

1
2 x2

dx.

For centralized and normalized random variables, i.e. random variables with zero mean
and unit variance we have √

n
σ

εn =
n

∑
j=1

y j/
√

n.

Using the central limit theorem we get the asymptotic distribution of the errors. Yet we still
do not have a quantitative result for finite samples. For distributions that have finite third
moments, we can establish general convergence rates by the Berry-Esseen theorem.

Theorem 4.4 (Berry-Esseen theorem). Let {Yn} be a sequence of independent and i.i.d.
random variables with zero mean and unit variance. Let Z = ∑

n
j=1Y j/

√
n, and FZ(z) = P[Z ≤

z]. Suppose further that ρ = E[|Y1|3]< ∞. Then

sup
z
|FZ(z)−Φ(z)| ≤Cρ/

√
n,

where C is a constant independent of the distribution of the variables Yn.

Proof. Recall that the characteristic function for a random variable X taking values in R is
defined as

ζX (β ) = E[exp(iβX)].

We will need the following result for the proof, which was presented in [13].

Lemma 4.5. Suppose a random variable with cumulative distribution function H, with
expectation 0 and characteristic function ζ . Further suppose that G is differentiable, its
Fourier transform ξ has a derivative ξ ′ which takes the value 0 at 0, and G has the limits 0
and 1 as its argument approaches ±∞ respectively. Then

∀x ∀θ > 0 : |H(x)−G(x)| ≤ 1
π

∫
θ

−θ

|ξ (β )−ζ (β )|/|β |dβ +24max(|G′|)/(πθ).

Note, that also ζ ′(0) = 0, since the distribution has expectation 0, so G somewhat fits to
the cumulative distribution function H.
Denoting the characteristic function of Y1 as ξ̂ and using Lemma 4.5, we get

π|FZ(z)−Φ(z)| ≤
∫

θ

−θ

|ξ̂ n(β/
√

n)− exp(−β
2/2)|/|β |dβ +24max(|φ |)/θ , (4.2)
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since it holds that

ξ (β ) = E(exp(iβZ)) = E(exp(i(β/
√

n)Y1)
n) = ξ̂

n(β/
√

n)

and since the standard normal distribution is a fixpoint (neglecting the constant) for the
Fourier transformation, i.e. it has characteristic function exp(−β 2/2).
Now the proof and construction of a preferably small constant C becomes a rather technical
task. Clearly we have max(|φ |) = 1/

√
2π ≤ 0.4 and using the result

|exp(iy)−
l

∑
k=0

(iy)k/k!| ≤ |y|
l+1

(l +1)!
∀y ∈ R,

one can show that

|ξ̂ (β )−1+β
2/2| ≤ E|exp(iβY )−1− iβY +β

2Y 2/2| ≤ |β 3|ρ/6,

which yields

|ξ̂ (β/
√

n)−1+β
2/(2n)| ≤ |β 3|ρ n−3/2

6
.

Choose θ = (4/3)
√

n/ρ .
By Jensen’s inequality E(|Y |2)3/2 ≤ E(|Y |3), thus we have ρ > 1 and θ < (4/3)

√
n <
√

2n
then.
Therefore we can further approximate

|ξ̂ (β/
√

n)| ≤ 1−β
2/(2n)+ |β 3|ρ n−3/2

6
, if |β | ≤ θ .

Hence, for β ≤ θ ,

|ξ̂ (β/
√

n)| ≤ 1−β
2/(2n)+ |β 2| 4

18n
= 1− 5

18
β 2

n
≤ exp(− 5

18
β 2

n
)

and

|ξ̂ (β/
√

n)|n−1 = exp(−5(n−1)
18

β 2

n
)≤ exp(−β

2/4) if n≥ 10.

It can be estimated that the theorem holds for n < 10.
For α and η complex, with |α| ≥ |η |, it holds that

|αn−η
n|= |α−η |

∣∣∣∣∣n−1

∑
j=0

α
j
η

n−1− j

∣∣∣∣∣≤ |α−η |
n−1

∑
j=0
|α j||ηn−1− j|= |α−η | n |α|n−1.

Therefore the integrand in (4.2) is bounded by

|ξ̂ (β/
√

n)− exp(−β
2/2n)|exp(−β

2/4)
n
|β |

and

|ξ̂ (β/
√

n)− exp(−β
2/2n)| ≤ |ξ̂ (β/

√
n)−1+

β 2

2n
|+ |1− β 2

2n
− exp(−β 2

2n
)| ≤ |β 3| ρ

6
√

n
+
|β 4|
8n

.
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Thus the integrand can further be bounded by

n
(
|β |2ρ

6
√

n
+
|β |3

8n

)
exp(−β 2

4
)

4
3
√

n
1
θ
≤
(

2
9

β
2 +

1
18
|β |3

)
exp(−β 2

4
)

1
θ
.

Partial integration over (−θ ,θ) yields

πθ |FZ(z)−Φ(z)| ≤ (8/9)
√

π +8/9+10 < 4π, i.e.

|FZ(z)−Φ(z)|< 4
3
4

ρ√
n
.

Therefore the theorem holds with C = 3.

The best estimate for the constant C, or at least the best that was broadly published so far,
was given in [11], where it was proved that the Berry-Esseen theorem holds for C = 0.4748.
Esseen himself found the still current lower bound C0 ≥ (

√
10+3)/(6

√
2π) = 0.4097...

Remark 4.6. In practice, one further deduces the normal approximation rule from the cen-
tral limit theorem: for n large enough, the distribution of εn is approximately a Gaussian
random variable with mean 0 and variance σ2

n . It can be estimated via the Berry-Esseen
theorem and estimates for the third moment, if a specific n is sufficiently large to allow that
approximation.

The preceding rule allows one to define a confidence interval:

Example 4.7. A confidence level often used in practice is the 99% level.
About 99% of the area under a standard normal curve lies within [−2.58,2.58]. Therefore we
get with Proposition 4.3 for large n, with a probability close to 99%, that

|εn| ≤ 2.58
σ√

n
.

4.2 Implementation of Monte-Carlo methods

To implement this method on a computer, we can proceed as follows.
Most programming languages, or more precisely their corresponding compilers, have al-
ready implemented a procedure for creating a sequence of realizations of uniformly dis-
tributed random variables. Creating such a sequence directly for arbitrary distributions is
generally not possible. Therefore the idea is to find a representation of the desired distribu-
tion as a function of a uniform distribution U on [0,1]. If the desired distribution X has an
invertible cumulative distribution function F , a possible representation is

X = F−1U.

To verify that, consider

P(F−1U ≤ a) = P(U ≤ F(a)) = F(a) = P(X ≤ a)

since F is a monotone function and U is uniform on [0,1].
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Simulation of a uniform law on [0,1]

The simplest method to build a random number generator is to use the linear congruen-
tial generator. A sequence (xn)n≥0 of integers between 0 and m−1 is generated as follows:{

x0 = initial value ∈ {0,1, ...,m−1}
xn+1 = axn + c (modulo m),

a,c,m being integers to be chosen cautiously in order to obtain a good random number gen-
erator. The Hull-Dobell Theorem states that a linear congruential generator has full period
m if and only if

m and c are relatively prime,
a-1 is divisible by all prime factors of m
and a-1 is divisible by 4 if m is divisible by 4.

For example, Microsoft Visual C++ uses

m = 232, a = 214013, and c = 2531011.

Dividing this integer values by m gives pseudo-random real-valued numbers in [0,1).

Linear congruential generators are not suitable if high-quality randomness is critical, one
reason being that they produce serial correlation, i.e. corresponding tests yield a dependence
of the value at some time or iterate t with the value at some time s.

Simulation of an exponential distribution

Since the exponential distribution has an invertible distribution function F = 1− e−λx,
x ≥ 0, we can simulate a random variable X following an exponential distribution with
parameter λ via

X = F−1(U) =− log(1−U)/λ .

Note, that 1−U is also uniformly distributed on [0,1], so we can set

X =− log(U)/λ .

Simulation of a Gaussian distribution

For the Gaussian distribution the inversion method above is not straightforwardly appli-
cable, since the cumulative distribution function is not an elementary function. Therefore
we take a different approach.

Consider two independent standard Gaussian variables X and Y . Their joint density is given
by

fX ,Y (x,y) = fX (x) fY (y) =

√
1

2π
exp(−x2

2
)

√
1

2π
exp(−y2

2
) =

1
2π

exp(−x2 + y2

2
).
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In polar variables R =
√

X2 +Y 2 and Θ = arctan(Y/X), that is

fR,θ (r,θ) =
1

2π
r exp(− r2

2
), r ≥ 0,

because the Jacobian determinant of the transformation is r.
This further yields

fR2,Θ((r̃,θ)) =
1

2π

1
2

exp(− r̃
2
) = fΘ(θ) fR2(r̃), r̃ ≥ 0,

since in informal notation dr2 = 2rdr and by considering fR2(r̃) as a chi-squared distribution
with two degrees of freedom.
So R2 ∼ exp(1

2 ), Θ ∼U(0,2π) and R2 is independent of Θ. Furthermore, we just saw that
− log(U)/λ gives a simulation of an exp(λ ) distributed random variable. Hence we can set

R =
√
−2log(U1),

Θ = 2πU2,

which yields that
X = Rcos(Θ) =

√
−2log(U1) cos(2πU2)

Y = Rsin(Θ) =
√
−2log(U1) sin(2πU2)

are independent standard Gaussian variables.
Now, if we want to simulate an arbitrary Gaussian law with mean m and variance σ2, we
can set

X = m+σg,

where g∼ N(0,1).

Simulation of Gaussian vectors

In multidimensional normal models Gaussian vectors are considered. Having estab-
lished a procedure for simulating a Gaussian variable, we can extend that to simulate a
Gaussian vector X = (X1, ...,Xn) with means m = (E(X1), ...,E(Xn)) and covariance matrix
Γ = (Γi j)1≤i, j≤n where Γi j = E(XiX j)−E(Xi)E(X j).

To do that, derive the square root A of the positive semi-definite matrix Γ via Cholesky
decomposition. If an eigenvalue of Γ is very close to 0, one has to be careful of numeri-
cal instability. Otherwise the Cholesky decomposition has a unique stable solution and A
is invertible. Now it can be checked, that the vector Z = A−1(X −m) is a Gaussian vector
with zero mean and the identity matrix as covariance matrix, i.e. the coordinates of Z are
independent standard normal variables.
Therefore simulating n independent standard normal variables G = (g1, ...,gn) and comput-
ing m + AG gives a realization of a Gaussian vector with mean m and covariance matrix
Γ = AAT .
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Simulation of a Poisson distribution

Recall the definition of a Poisson process.

Definition 4.8. Let (Ti)i≥1 be a sequence of i.i.d. random variables with distribution exp(λ ).
Let τn = ∑

n
i=1 Ti. We call the Poisson process with intensity λ the process Nt defined by

Nt = ∑
n≥1

1{τn≤t} = ∑
n≥1

n1{τn≤t<τn+1}.

Also recall that Nt follows a Poisson law with parameter λ t, i.e.

P(Nt = n) = e−λ t (λ t)n

n!
,n≥ 0.

This relationship between a Poisson process and the exponential distribution allows us to
simulate a Poisson distribution.
N1 has the desired distribution with parameter λ . As established before, we can express an
exponential variable as − log(U)/λ . This yields

τn = T1 + ...+Tn =−
1
λ

log(U1U2 · · ·Un).

So adding and counting realizations of exp(λ ) one at a time, until the term exceeds the
value 1, gives a realization of a Poi(λ ) variable. To not have to compute a logarithm at every
step, it is numerically more efficient to use the fact

T1 + ...+Tn ≤ 1⇔
n

∏
i=1

Ui ≥ e−λ .

4.3 Comparison with other methods

Note, that Monte Carlo simulation to estimate the expected value of a distribution Y =

f (X) with X ∼U(0,1) corresponds to numerically estimating the integral

E( f (X)) =
∫

f (x)pX (x)dx =
∫

f (x)dx≈ 1
N

N

∑
i=1

f (xi)

at random points {xi} in [0,1].
The Monte Carlo method can theoretically be applied without having any information about
the underlying distribution. When we know the distribution of X, as it is the case in most
applications, where we have X ∼U(0,1), we can consider different methods to estimate the
integral above.
If we consider the simplest approach, using a staircase function, we get

E( f (X))≈
N

∑
i=1

f (xi)∆x
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with xi = i/N and f : Rm→ R.
It can be shown that for in the one dimensional case f : R→R the convergence rate is better
when we just pick evenly distributed points from U(0,1) as above, whereas for high dimen-
sions it is much worse compared to simulating random points.

One can also consider more precise numerical integration methods, but those are some-
times difficult and expensive to implement.

Finally, instead of simulating with pseudo-random numbers in Monte Carlo methods one
can also consider low discrepancy sequences. These are also deterministic sequences and
in general more evenly distributed than the pseudo-random ones. This can lead to better
convergence rates than O(1/

√
N) as in the regular Monte-Carlo methods even for higher di-

mensions. Consider though, that these so-called Quasi-Monte Carlo methods do not always
lead to better results and their convergence rates are more difficult to estimate.

4.4 Polynomial Chaos Expansion

A fairly modern approach is to represent the desired distribution by using a so-called
polynomial chaos expansion (PCE), i.e. for example to expand the relationship X = F−1(U)

in a polynomial series.
Additionally, in polynomial chaos theory also other base distributions than the uniform
distribution are considered, generally called germ distribution θ . Typically the choice is
between uniform, normal and exponential distributions. In the case that the distribution
function is invertible we have

X = f (θ) = F−1
X Fθ (θ),

since Fθ (θ) is a uniform random variable on [0,1].
Now a PCE takes that representation and expands it in a polynomial series. The specific
polynomial basis used is a set of orthogonal polynomials with respect to the distribution of
the germ. More precisely, consider the inner product of functions g1,g2 with respect to the
probability density function pθ of θ , defined by

〈g1,g2〉=
∫

g1(ξ )g2(ξ )pθ (ξ )dξ .

Then the polynomial basis comprises polynomials Ψ0 = 1,Ψ1,Ψ2, ..., where Ψ j is a polyno-
mial of order j and where they satisfy the orthogonality condition that

〈Ψ j,Ψk〉= 0 ∀ j 6= k. (4.3)

The expected value of the polynomial function, hence continuous and on R measurable
function Ψ j of θ is given by

E[Ψ j(θ)] =
∫

Ψ j(ξ )pθ (ξ )dξ .
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Therefore, by construction, E[Ψ j(θ)] = 0 for j ≥ 1, since they are orthogonal to Ψ0 = 1.

This further implies that 〈Ψ j,Ψ j〉 is the variance of Ψ j(θ) for all j ≥ 1 and 〈Ψi,Ψ j〉 is the
covariance of Ψ j(θ) and Ψk(θ) for all j,k ≥ 1.
Consequently, since 〈Ψ j,Ψk〉= 0 for j 6= k, the Ψ j(θ) are uncorrelated.
Also note, that since we always have Ψ0 = 1,

x0 := 〈 f ,Ψ0〉/〈Ψ0,Ψ0〉= 〈 f ,Ψ0〉=
∫

f (ξ )pθ (ξ )dξ = E( f (θ)) = E(X).

Furthermore, it can be shown that

Var(X) = ∑
i≥1

(〈 f ,Ψi〉/〈Ψi,Ψi〉)2 =: ∑
i≥1

x2
i .

So estimating the expected value and variance of X comes down to approximating the xi.

A popular example are the Hermite polynomials.

Definition 4.9. The Hermite polynomials are defined by

Hn(x) = (−1)nex2 dn

dxn e−x2
,n = 0,1,2, ...

Proposition 4.10. If the germ distribution θ ∼ N(0, 1
2 ), the Hermite polynomials satisfy the

orthogonality condition (4.3).

Proof. The definition of the Hermite polynomials implies∫ 1√
π

e−x2
Hm(x)Hn(x)dx = (−1)n 1√

π

∫
Hm(x)

dn

dxn e−x2
dx.

Partial integration, applied n times, yields that the integral vanishes for m < n.

Now using the orthogonal basis polynomials we write

X = f (θ) =
∞

∑
j=0

x jΨ j(θ). (4.4)

The x j are called mode strengths, the Ψ j mode functions and their combination x jΨ j is
called the j-th mode. Given f and the Ψ j’s there is a unique expansion (4.4) in which the
mode strengths are given by

x j = 〈 f ,Ψ j〉/〈Ψ j,Ψ j〉. (4.5)

Thereby, the numerator usually has to be computed numerically, whereas the denominator
will in general be known from the construction of the orthogonal polynomials.

Remark 4.11. In practice, PCEs are truncated to a finite number of terms, hence we con-
sider

Xp = fp(θ) =
p

∑
j=0

x jΨ j(θ).
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For detailed insights, it is referred to the publications of Dongbin Xiu, see e.g. [16].

Remark 4.12. Another simulation approach in the context of regression problems is the
so-called Bootstrap aggregation, where the empirical distribution function D̂ over X ×Y is
being simulated by a Monte-Carlo method. That is, a number of equal-sized resamples with
replacement from the empirical distribution function are being produced.
Then modeling from the resamples separately and averaging over the individual results can
lead to better model fits than only considering the original data set.





Chapter 5

Application to the analysis of
telematics data

A modern approach in German car insurance is to track the drives of the policyholders
in order to get more information about high-risk driving profiles and to lower the amount of
accidents by rewarding a safe driving style.
The analysis of this so-called telematics data is still quite unexplored. Therefore a project
has been started by the mathematical association VM4K to further the research in this area.
The first results are shown in this application chapter. The utilized methods have been es-
tablished throughout this thesis.

Telematics data is recorded during the car drives of the project participants and tracks prop-
erties like current speed, acceleration and route type. As a first step, the data has been en-
riched by generating additional properties like the exact mileage and indicators for speeding
and braking.

To be able to estimate the claims expenditures of a driving profile, we aggregate the data to
a driver level, that is we build a n× p model matrix X consisting of n different drivers and p
considered driving properties. Thereby we consider different property sets, which are being
standardized as preparation for a Principal Component Analysis.
As introduced in section 3.7, this data mining approach allows us to extract principal com-
ponents and to reduce the dimensionality of the respective regression models.
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5.1 PCA of the telematics data

We have established in section 3.7 that the Principal Component Analysis can be com-
fortably performed using the Singular Value Decomposition (SVD) and we introduced im-
plementation ideas for the SVD. There are optimized SVD routines available in different
libraries.

The SVD routine for the model matrices of telematics data was taken out of the C++ li-
brary Eigen, which is a high-level template library and its routine JacobiSVD performs
similarly to the approach we discussed in Section 3.7 by pivoted QR-preconditioning and
Jacobi-rotations.

As mentioned above, we considered the SVDs for model matrices with different property
sets in this project, in order to get more insights about characteristic driving styles and suit-
able regression models based on them.
For better clarity, we will restrict ourselves to two different property sets in the presentation.
The first one consists of only six properties which are supposed to be risk relevant due to
prestudies and which are not too strongly correlated. In that setting the principal compo-
nents and the resulting regression models are nicely interpretable.
The second property set consists of 26 selected properties. By means of that set we show
exemplarily how the SVD can be used to reduce the dimensionality of the respective tele-
matics regression model.

The analysis of the first property set serves as a initial step to get insights about key prop-
erties and characteristical linear combinations of them, which can in turn help to interpret
bigger models later. As mentioned, key properties are ones that turned out to be probably
significantly risk relevant in prestudies.
However, due to the large amount and high resolution of the given data, there is also a large
number of possible properties, so much more important properties like e.g. about overtaking
behavior will probably be found in further telematics research.

Remark 5.1. One has to keep in mind that the SVD only recognizes linear relationships.
So in the process of extracting properties out of the big data matrix, it might be helpful to
also consider non-linear functionals. For example, for the key property to measure the ac-
celeration behavior, we took the squared g-forces, which led to seemingly more reasonable
results compared to the linear values.

The resulting principal components and singular values for the first property set are
shown in figure 5.1.
Based on this results we will build a small PC-regression model, which will be relatively
easy to interpret. Before that, we will also consider a standard regression model based on
the key properties itself to get some preliminary insights about the isolated impact of single
properties.
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Figure 5.1: SVD of the model matrix with just 6 properties: the 6-dimensional normalized
principal component vectors, i.e. the columns of the matrix V in the SVD, are shown in a
graphical representation

For further insights to possible rewards for specific driving styles, one can try to asso-
ciate types of drivers to the principal components.
For example, the second PC could be associated with a commuter driving style, since it
contains over-average mileage and rate of freeway drives, but under-average rates of night
drives and speeding. Furthermore, the 4th PC could be associated with a new driver because
of the very low rate of speeding and strongly over-average rate of night drives which indi-
cates a younger age. In contrast, PC 6 could be associated with a holiday driver due to the
low mileage and over-average rate of freeway drives.
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As the second property set for the presentation, we use a selection of 26 properties to show,
how this data mining approach can be utilized for dimensionality reduction. This approach
can then also be applied to much larger property sets.
Selected principal components and the singular values can be seen in figure 5.2.

Figure 5.2: SVD of the model matrix with 26 properties, shown are from left to right the
first, second and 26. principal component in a graphical representation and the singular
values

In figure 5.2 we see that for the selection of 26 properties we have a much more inhomo-
geneous distribution of the singular values. Two singular values are quite dominant and
for example the last principal component does have many entries very close to zero. This
indicates that there are strongly correlating properties in the selection. Therefore we will
perform a very radical dimensionality reduction and evaluate a regression model based on
only the first two PC scores.

Remark 5.2. It is a natural approach and the most popular one to choose the PC scores with
the largest variance for building the regression model. However, it should be mentioned that
Jolliffe found examples in [21] in which this approach is not optimal for the regression re-
sults. For further studies on that topic one should be mindful of slightly different definitions
of principal components across the literature.

Before we get to the dimensional reduction, we first return to the small property set and
build regression models based on that properties.
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5.2 Constructing a GLM based on selected driving properties

Now, as a first preliminary step to get insights about the influence of individual proper-
ties on the expected claims expenditures, we construct a GLM based on the six properties
in the first property set directly.

After the aggregation to a driver level and data mining we are able to build a reasonable
GLM and therefore chose this regression method here instead of one without distribution
assumptions for unstructured data. As underlying distribution the Poisson distribution was
taken and as link function the canonical log-link. These assumptions were chosen because
they turned out to be suitable in many insurance applications and they give a multiplicative
pricing structure which is very nice to interpret.
As response variable we take the corresponding premiums of the drivers.

Remark 5.3. The claims expenditures were not fully available yet, so the corresponding
premiums of the policyholders were taken as a replacement response variable, which im-
plicitly contain the expected claims expenditures of a driver.

For example for the property ’rate of night drives’ we see in figure 5.3 that a high rate
leads to distinctly higher premiums. So punishing night drives in a telematics tariff could
lead to smaller claims expenditures.

Figure 5.3: property "rate of night drives" in Poisson GLM based on 6 properties

Remark 5.4. There are different approaches to measure the quality of a regression model.
The statistical approach is often by applying hypothesis tests. Another popular measure for
the goodness of fit is the R2-value, which calculates the decrease of errors in comparison
with a null model, that just takes the average as constant fit for all values.
The approach in the Machine Learning framework is generally to validate the model with a
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test data set. The frameworks coincide though and using test data is also a known technique
in the field of statistics.

In the presentation we will use a method, that can be reasonably applied to any model,
the cross-validation.
Cross-Validation is a good technique to validate the goodness of predictions of a model,
which we are particularly interested in.
As already mentioned in remark 3.47, it is done by splitting the model matrix into parts
of equal or similar size, iteratively taking one part as test data and building the regression
model based on the remaining model matrix.

More precisely, we randomly split the driving profiles in our model matrix into 4 parts.
To do that, we assign a random number to each driving profile using a linear congruential
generator, as described in section 4.2, order them and build 4 partitions of similar size. Fol-
lowing that we take the first part as test data and build a GLM based on the coefficients a1
and a2 of the remaining driving profiles. Then we take the second part as test data and so
on. This procedure is called 4-fold cross validation.

The results can be seen in figure 5.4. It shows the distribution of the relative differences
between the current premiums and the ones predicted by the GLM which is based on six
selected properties.

Figure 5.4: Cross Validation of the Poisson GLM based on 6 selected properties
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5.3 Constructing a GLM based on the PCA

Our main idea is to estimate the claims expenditures based on the principal component
scores in the SVD, i.e. on the similarity to characteristic driving styles.
Recall, that since the first r columns of V build an orthonormal basis for the columns of the
rank r matrix X, i.e. for the driving profiles, we can represent any driving style v in terms of
the orthonormal columns Vi, i.e. v = ∑ai Vi with coefficients or PC scores ai = 〈v,Vi〉.

With this approach we do not analyze the impact of specific properties, but the contribu-
tion of characteristic driving profiles. As regression method we choose a Poisson GLM
again for the same reasons. Firstly, for the model matrix with just 6 properties one of the
results can be seen in figure 5.5.

Figure 5.5: SVD based GLM for model matrix with just 6 properties

As already mentioned, the second principal component for the model matrix with just 6
properties can be associated with a commuter driving style.
The GLM indicates that this driving style is a safe driving style, since a larger correspond-
ing coefficient leads to lower premiums for a driver.
Since we considered the entire decomposition of the model matrix and the same property
set as in the preceding model, the distribution of the errors is similar here.

Remark 5.5. Note, that the sign of a principal component Vi is arbitrary since we have
UΣV = (−U)Σ(−V ) in a decomposition. However, in the GLM this is adjusted, since the
sign of the coefficients or PC scores (−U)Σ also change when we consider −V instead of V .
So we would get that the opposite characteristic driving style (−Vi) is a risky one instead of
the original one being a safe driving style.

Using the SVD of the model matrix with 26 properties, we will show how we we can
reduce the dimensionality of the regression model. Since figure 5.2 shows that the first two
singular values are quite dominant, we cut off after these two and build a rough but simple
Poisson GLM on the coefficients of the first two principal components.
The analysis for the second principal component can be seen in figure 5.6.
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Figure 5.6: SVD based GLM for model matrix with 26 properties

In this model matrix with 26 properties the second principal component comprises, among
others, slightly over-average rates of routine drives and under-average rates of night drives.
The GLM indicates that this driving style is a safe one. It is quite remarkable that we get
a differentiation of about 50% higher premiums for the coefficients in the lowest cluster
compared to the highest cluster.

The results of the cross-validation can be seen in figure 5.7, where the distribution of the rel-
ative differences between the original premiums and the ones predicted by the GLM based
on only two coefficients or PC scores is shown.

Figure 5.7: Cross Validation of the Poisson GLM based on the first 2 PC scores in the model
matrix with 26 properties
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Considering we only use two PC scores to build the GLM, the predictions are quite good.
They are already comparable to the predictions of the 6-dimensional GLM in figure 5.4.

Overall we were able to predict, to a limited extent, the premiums of project participants
based on their driving behavior already with very low-dimensional models. The premiums
were only a replacement response variable though and since there is supposed to be new im-
portant information gained from driving styles, the matching probably cannot be completely
accurate with any model. However, when there is significant data about the corresponding
claims expenditures available, these studies can serve as a basis for bigger models with the
actual claims expenditures as response variables.

5.4 Outlook: Polynomial Chaos Expansion for broader model
fitting

The empirical distribution function of driving styles is bounded by the maximum and
minimum values that appear in the dataset. In bigger driver populations there will likely
appear more extreme driving styles though.

Therefore an idea is to smooth the empirical distribution function by matching a polyno-
mial function with the same first moments to the empirical distribution function, which is a
form of polynomial chaos expansion. Then new driving styles can be simulated as described
in Chapter 4.

The corresponding algorithm could not be programmed stably yet, but it is an interesting
approach for further studies.
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